Effects of the аspen short-rotation plantation on the C and N biological cycles in boreal forests: the model experiment
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 398-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of a model experiment on the evaluation of environmental effects of the forest plantation based on transgenic forms of aspen are analyzed. The system of simulation models EFIMOD, which combines both populational and mass-balance approaches, was used to investigate changes of the biological cycles of carbon and nitrogen as a result of the replacement of natural forests by aspen (Populus tremula L.) plantations (including plantation of aspen trees with modified growth parameters and increased nitrogen content in tissues). The model experiment was carried out using the data on climate and soils that are typical for spruce forests of North-West of Leningrad region. Short-rotation plantations (30 yrs) on the place of spruce forests after clear cutting were simulated. The results obtained showed a greater decrease of C stock in soils under plantations of modified aspen trees. The total pool of N in soils under plantations slightly decreased in spite of the nitrogen fertilizer use. Losses of C and N in forest soils are explained by the consumption of nutrient elements by fast-growing stands of transgenic and non-trangenic aspen that not compensated by the return of the elements with the annual litter fall.
@article{MBB_2015_10_2_a8,
     author = {A. S. Komarov and O. G. Chertov and S. S. Bykhovets and I. V. Priputina and V. N. Shanin and E. O. Vidyagina and V. G. Lebedev and K. A. Shestibratov},
     title = {Effects of the {\cyra}spen short-rotation plantation on the {C} and {N} biological cycles in boreal forests: the model experiment},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {398--415},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a8/}
}
TY  - JOUR
AU  - A. S. Komarov
AU  - O. G. Chertov
AU  - S. S. Bykhovets
AU  - I. V. Priputina
AU  - V. N. Shanin
AU  - E. O. Vidyagina
AU  - V. G. Lebedev
AU  - K. A. Shestibratov
TI  - Effects of the аspen short-rotation plantation on the C and N biological cycles in boreal forests: the model experiment
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 398
EP  - 415
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a8/
LA  - ru
ID  - MBB_2015_10_2_a8
ER  - 
%0 Journal Article
%A A. S. Komarov
%A O. G. Chertov
%A S. S. Bykhovets
%A I. V. Priputina
%A V. N. Shanin
%A E. O. Vidyagina
%A V. G. Lebedev
%A K. A. Shestibratov
%T Effects of the аspen short-rotation plantation on the C and N biological cycles in boreal forests: the model experiment
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 398-415
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a8/
%G ru
%F MBB_2015_10_2_a8
A. S. Komarov; O. G. Chertov; S. S. Bykhovets; I. V. Priputina; V. N. Shanin; E. O. Vidyagina; V. G. Lebedev; K. A. Shestibratov. Effects of the аspen short-rotation plantation on the C and N biological cycles in boreal forests: the model experiment. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 398-415. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a8/

[1] Dorodnitsyn A. A. (red.), Matematicheskie modeli ekosistem. Ekologicheskie i demograficheskie posledstviya yadernoi voiny, Nauka, M., 1986, 176 pp.

[2] Robock A., Oman L., Stenchikov G. L., Toon O. B., Bardeen C., Turco R. P., “Climatic consequences of regional nuclear conflicts”, Atmospheric Chemistry Physics, 7 (2007), 2003–2012 | DOI

[3] Wimp G. M., Young W. P., Woolbright S. A., Keim P., Whitham T. G., “Conserving plant genetic diversity for dependent animal communities”, Ecology Letters, 7 (2004), 776–780 | DOI

[4] Boerjan W., “Biotechnology and the domestication of forest trees”, Current Opinion in Biotechnology, 16 (2005), 159–166 | DOI

[5] Shutov I. V., Maslakov E. L., Markova I. A., Lesnye plantatsii: uskorennoe vyraschivanie eli i sosny, Lesnaya promyshlennost, M., 1984, 246 pp.

[6] Fang S., Xu X., Lu S., Tang L., “Growth dynamics and biomass production in shortrotation poplar plantations: 6-year results for three clones at four spacings”, Biomass Bioenergy, 17 (1999), 415–425 | DOI

[7] Larocque G. R., “Performance and morphological response of the hybrid poplar DN-74 (Populus deltoides x nigra) under different spacings on a 4-year rotation”, Annals of Forest Science, 56 (1999), 275–287 | DOI

[8] Mamashita T., Larocque G. R., DesRochers A., Beaulieu J., Thomas B. R. Mosseler A., Major J., Sidders D., “Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows”, Biomass Bioenergy, 81 (2015), 88–97 | DOI

[9] Pilate G., Guiney E., Holt K., Petit-Conil M., Lapierre C., Leple J. C., Pollet B., Mila I., Webster E. A., Marstorp H., Hopkins D. W., Louanin L., Boerjan W., Schuch W., Cornu D., Halpin C., “Field and pulping performances of transgenic trees with altered lignification”, Nature Biotechnology, 20 (2002), 607–612 | DOI

[10] Park Y. W., Baba K., Furutab Y., Iidab I., Sameshimac K., Araid M., Hayashi T., “Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar”, FEBS Letters, 564 (2004), 183–187 | DOI

[11] Lebedev V. G., Shestibratov K. A., “Opyt sozdaniya biotekhnologicheskikh form drevesnykh rastenii”, Lesovedenie, 2015, no. 3, 222–232 | Zbl

[12] Lebedev V. G., Shestibratov K. A., Shadrina T. E., Bulatova I. V., Abramochkin D. G., Miroshnikov A. I., “Kotransformatsiya osiny i berezy tremya oblastyami T-DNK, nakhodyaschimisya na dvukh razlichnykh replikonakh v odnom shtamme Agrobacterium tumefaciens”, Genetika, 46:11 (2010), 1458–1466

[13] Shestibratov K. A., Podrezov A. S., Salmova M. A., Kovalitskaya Yu. A., Vidyagina E. O., Loginov D. S., Koroleva O. V., Miroshnikov A. I., “Fenotipicheskoe proyavlenie ekspressii gena ksiloglyukanazy iz Penicillium canescens v transgennykh rasteniyakh osiny”, Fiziologiya rastenii, 59:5 (2012), 668–676

[14] Schestibratov K., Lebedev V., Podrezov A., Salmova M., “Transgenic aspen and birch trees for Russian plantation forests”, BMC Proceedings, 5:7, Suppl. (2011), 124 | DOI

[15] Almeida A. C., Landsberg J. J., Sands P. J., Ambrogi M. S., Fonseca S., Barddal S. M., Bertolucci F. L., “Needs and opportunities for using a process-based productivity model as a practical tool in Eucalyptus plantations”, Forest Ecology Management, 193:1–2 (2004), 167–177 | DOI | MR

[16] Landsberg J. J., Waring R. H., “A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning”, Forest Ecology Management, 95 (1997), 209–228 | DOI

[17] Stape J. L., Ryan M. G., Binkley D., “Testing the utility of the 3-PG model for growth of Eucalyptus grandis $x$ urophylla with natural and manipulated supplies of water and nutrients”, Forest Ecology Management, 193:1–2 (2004), 219–234 | DOI

[18] Perez-Cruzado C., Mohren G. M. J., Merino A., Rodriguez-Soalleiro R., “Carbon balance for different management practices for fast growing tree species planted on former pastureland in southern Europe: A case study using the CO$_2$-Fix model”, European J. of Forest Research, 131:6 (2012), 1695–1716 | DOI

[19] Mohren G. M. J., Garza Caligaris J. F., Masera O., Kanninen M., Karjalainen T., Pussinen A., Nabuurs G. J., CO2FIX for Windows: a dynamic model of the CO$_2$-fixation in forests. Version 1.2, IBN Research Report 99/3, , 1999 (data obrascheniya: 23.07.2015) http://dataservices.efi.int/casfor/downloads/co2fix1_2_manual.pdf

[20] Liski J., Palosuo T., Peltoniemi M., Sievanen R., “Carbon and decomposition model Yasso for forest soils”, Ecological Modelling, 189 (2005), 168–182 | DOI

[21] Komarov A. S., Chertov O. G., Zudin S. L., Nadporozhskaya M. A., Mikhailov A. V., Bykhovets S. S., Zudina E. V., Zoubkova E. V., “EFIMOD 2 — a model of growth and cycling of elements in boreal forest ecosystems”, Ecological Modelling, 70 (2003), 373–392 | DOI

[22] Kudeyarov V. N. (red.), Modelirovanie dinamiki organicheskogo veschestva v lesnykh ekosistemakh, Nauka, M., 2007, 380 pp.

[23] Vidyagina E. O., Kovalitskaya Yu. A., Loginov D. S., Koroleva O. V., Shestibratov K. A., “Ekspressiya gena ksiloglyukanazy sp-Xeg iz Penicillium canescens usilivaet rost i rizogenez transgennykh rastenii osiny”, Biotekhnologiya, 2013, no. 4, 39–47

[24] Chertov O. G., Komarov A. S., Nadporozhskaya M. A., Bykhovets S. S., Zudin S. L., “ROMUL — a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modeling”, Ecological Modelling, 138 (2001), 289–308 | DOI

[25] Komarov A. S., “Markovskie polya i rastitelnye soobschestva”, Vzaimodeistvuyuschie markovskie protsessy i ikh prilozheniya k analizu mnogokomponentnykh sistem, ONTI NTsBI AN SSSR, Puschino, 1980, 7–21 | MR

[26] Bykhovets S. S., Komarov A. S., “Prostoi statisticheskii imitator klimata pochvy s mesyachnym shagom”, Pochvovedenie, 2002, no. 4, 443–452

[27] Chertov O. G., “Matematicheskaya model ekosistemy odnogo rasteniya”, Zhurnal obschei biologii, 44 (1983), 406–414

[28] Chertov O. G., Komarov A. S., Tsiplyanovsky A. M., “A combined simulation model of Scots pine, Norway spruce and Silver birch ecosystems in European boreal zone”, Forest Ecology Management, 116 (1999), 189–206 | DOI

[29] Chertov O. G., Ekologiya lesnykh zemel, Nauka, L., 1981, 192 pp.

[30] Chertov O. G., “Imitatsionnaya model mineralizatsii i gumifikatsii lesnogo opada i podstilki”, Zhurnal obschei biologii, 46:6 (1985), 794–804

[31] Chertov O. G., Komarov A. S., “SOMM — a model of soil organic matter dynamics”, Ecological Modelling, 94 (1997), 177–189 | DOI

[32] Rozhnova T. A., Pochvennyi pokrov Karelskogo peresheika, Izd-vo AN SSSR, M.–L., 1963, 185 pp.

[33] Saxton K. E., Rawls W. J., Romberger J. S., Papendick R. I., “Estimating generalized soil water characteristics from texture”, Soil Science Society of America J., 50 (1986), 1031–1036 | DOI

[34] Bykhovets S. S., “O parametrizatsii vlazhnosti lesnoi podstilki v prostoi modeli vodnogo rezhima lesnykh pochv”, Matematicheskoe modelirovanie v ekologii, Materialy 3-i Natsionalnoi nauchnoi konferentsii s mezhdunarodnym uchastiem, IFKhiBPP RAN, Puschino, 2013, 40–41 | MR

[35] Bulygina O. N., Razuvaev V. N., Korshunova N. N., Shvets N. V., Massiv dannykh mesyachnykh summ osadkov na stantsiyakh Rossii, , VNIIGMI-MTsD, Obninsk (data obrascheniya: 14.03.2015) http://meteo.ru/data/158-total-precipitation#opisanie-massiva-dannykh

[36] Bulygina O. N., Razuvaev V. N., Trofimenko L. T., Shvets N. V., Massiv dannykh srednemesyachnoi temperatury vozdukha na stantsiyakh Rossii, , VNIIGMI-MTsD, Obninsk (data obrascheniya: 14.03.2015) http://meteo.ru/data/156-temperature#opisanie-massiva-dannykh

[37] Sherstyukov A. B., Massiv sutochnykh dannykh o temperature pochvy na glubinakh do 320 sm po meteorologicheskim stantsiyam Rossiiskoi Federatsii, , VNIIGMI-MTsD, Obninsk (data obrascheniya: 14.03.2015) http://meteo.ru/data/164-soil-temperature#opisanie-massiva-dannykh

[38] Veretennikov A. V., Fiziologiya rastenii, GRIF, M., 2006, 480 pp.

[39] Liesebach M., von Wuechlisch G., Muhs H. J., “Aspen for short-rotation coppice plantations on agricultural sites in Germany: Effects of spacing and rotation time on growth and biomass production of aspen progenies”, Forest Ecology Management, 121 (1999), 25–39 | DOI

[40] Rytter L., Stener L. G., “Productivity and thinning effects in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) stands in southern Sweden”, Forestry, 78 (2003), 285–294 | DOI

[41] Usoltsev V. A., Fitomassa lesov Severnoi Evrazii: Normativy i elementy geografii, UrO RAN, Ekaterinburg, 2002, 762 pp.

[42] Covington W. W., “Changes in the forest floor organic matter and nutrient content following clear cutting in northern hardwoods”, Ecology, 62 (1981), 41–48 | DOI