Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2015_10_2_a6, author = {E. M. Andreeva and V. V. Bavin and M. A. Belous and G. V. Muratova}, title = {Simulation of electrical activity of neurons using parallel computing techniques}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {344--355}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a6/} }
TY - JOUR AU - E. M. Andreeva AU - V. V. Bavin AU - M. A. Belous AU - G. V. Muratova TI - Simulation of electrical activity of neurons using parallel computing techniques JO - Matematičeskaâ biologiâ i bioinformatika PY - 2015 SP - 344 EP - 355 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a6/ LA - ru ID - MBB_2015_10_2_a6 ER -
%0 Journal Article %A E. M. Andreeva %A V. V. Bavin %A M. A. Belous %A G. V. Muratova %T Simulation of electrical activity of neurons using parallel computing techniques %J Matematičeskaâ biologiâ i bioinformatika %D 2015 %P 344-355 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a6/ %G ru %F MBB_2015_10_2_a6
E. M. Andreeva; V. V. Bavin; M. A. Belous; G. V. Muratova. Simulation of electrical activity of neurons using parallel computing techniques. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 344-355. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a6/
[1] XII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Neiroinformatika-2010»: Lektsii po neiroinformatike, MIFI, M., 2010, 328 pp.
[2] Chizhov A. V., Turbin A. A., “Ot modelei edinichnykh neironov k modelyam populyatsii neironov”, Neiroinformatika, 2006, no. 1, 76–88
[3] Jolivet R., Lewis T. J., Gerstner W., “Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy”, Journal of Neurophysiology, 92:2 (2004), 959–976 | DOI
[4] Hodgkin A. L., Huxley A. F., “A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes”, Journal of Neurophysiology, 117:4 (1952), 500–544
[5] Izhikevich E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting, MIT Press, Cambridge, 2007, 464 pp. | MR
[6] Hale J., Kocak H., Dynamics and Bifurcations, Springer, New York, 1991, 567 pp. | MR | Zbl
[7] Koch C., Segev I., Methods in neuronal modeling: from ions to networks, MIT Press, Cambridge, 1999, 687 pp.
[8] Elektricheskii potentsial v biologicheskikh sistemakh. All-Fizika, (data obrascheniya: 05.05.2015) http://www.all-fizika.com/article/index.php?id_article=1977
[9] Nernst Equation. Calculating the cell potential under non-standard condition, (data obrascheniya: 05.05.2015) http://www.roanestate.edu/faculty/chemistry/chemistryslideshows/Nernst/Nernst.pdf
[10] Abbott L. F., Lapicque's introduction of the integrate-and-fire model neuron, Elsevier Science, Amsterdam, 1999, 303–304
[11] Shlizerman E., Holmes P., “Neural dynamics, bifurcations and firing rates in a quadratic integrate-and-fire model with a recovery variable. I: Deterministic behavior”, Neural Comput., 24:8 (2012), 2078–2118 | DOI | MR | Zbl
[12] Izhikevich E. M., “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos, 10:6 (2000), 1171–1266 | DOI | MR | Zbl
[13] Rubin A. B., Biofizika, Izd-vo Moskovskogo universiteta, M., 1999, 39–60