Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 294-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral membrane proteins OppB and OppC, comprising the backbone of oligopeptide bacterial ABC-transporters, are still unexplored in terms of expressional regulation of corresponding genes. The possibility of oppB transcription from additional promoters located between oppA and oppB within the oppABCDF operon was investigated using the unified promoter-search algorithm (PlatPromU) for 13 genomes of bacteria representing different taxonomic groups. Similar patterns in the distribution of potential transcription start sites have been revealed for Enterobacteriales, while unusual intergenic region oversaturated with potential promoters (“promoter island”) was found in Bifidobacterium dentium. Phylogenetic analysis and search for nucleotide motifs homologous to this “promoter island” suggest that a part of this sequence was acquired by the regulatory region of Bifidobacterium dentium oppB laterally transferred from the coding region of the gene of evolutionary distant Geobacillus thermodenitrificans GNTG_2042. This integration can trigger the formation of an extended "promoter island", which in this case was aimed to optimize the expression of the own gene oppB of Bifidobacterium dentium, rather than to the assimilation of the novel gene.
@article{MBB_2015_10_2_a2,
     author = {N. A. Sukharicheva and S. S. Kiselev and O. N. Ozoline and I. S. Masulis},
     title = {Transcriptional landscape variability within the bacterial {\emph{oppA-oppB}} intergenic region as revealed by computational search for the potential starts of {RNA} synthesis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {294--308},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/}
}
TY  - JOUR
AU  - N. A. Sukharicheva
AU  - S. S. Kiselev
AU  - O. N. Ozoline
AU  - I. S. Masulis
TI  - Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 294
EP  - 308
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/
LA  - ru
ID  - MBB_2015_10_2_a2
ER  - 
%0 Journal Article
%A N. A. Sukharicheva
%A S. S. Kiselev
%A O. N. Ozoline
%A I. S. Masulis
%T Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 294-308
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/
%G ru
%F MBB_2015_10_2_a2
N. A. Sukharicheva; S. S. Kiselev; O. N. Ozoline; I. S. Masulis. Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 294-308. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/

[1] Ames G. F.-L., Mimura C., Shyamala V., “Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human traffic ATPases”, FEMS Microbiol. Rev., 75 (1990), 429–446 | DOI

[2] Davidson A. L., Dassa E., Orelle C., Chen J., “Structure, function, and evolution of bacterial ATP-binding cassette systems”, Microbiol. Mol. Biol. Rev., 72 (2008), 317–364 | DOI

[3] Gilson E., Higgins C. F., Hofnung M., Ames G. F.-L., Nikaido H., “Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli”, J. Biol. Chem., 257 (1982), 9915–9918 (data obrascheniya: 07.06.2015) http://www.jbc.org/content/257/17/9915.full.pdf

[4] Navarro C., Wu L. F., Mandrand-Berthelot M. A., “The nik operon of Escherichia coli encodes a periplasmic binding protein-dependent transport system for nickel”, Mol. Microbiol., 9 (1993), 1181–1191 | DOI

[5] Koster W., “ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B-12”, Res. Microbiol., 152 (2001), 291–301 | DOI

[6] Henderson D. P., Payne S. M., “Vibrio cholerae iron transport system: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems”, Infect. Immun., 62 (1994), 5120–5125 (data obrascheniya: 07.06.2015) http://iai.asm.org/content/62/11/5120.full.pdf

[7] Rodriguez G. M., Smith I., “Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis”, J. Bacteriol., 188 (2006), 424–430 | DOI

[8] Saier M. H., Reddy V. S., Tamang D. G., Vastermark A., “The transporter classification database”, Nucl. Acids Res., 42 (2014), D251–D258 | DOI

[9] Transporter Classification Database, (data obrascheniya: 07.06.2015) http://www.tcdb.org

[10] Hiles I. D., Gallagher M. P., Jamieson D. J., Higgins C. F., “Molecular characterization of the oligopeptide permease of Salmonella typhimurium”, J. Mol. Biol., 195 (1987), 125–142 | DOI

[11] Hogarth B. G., Higgins C. F., “Genetic organization of the oligopeptide permease (opp) locus of Salmonella typhimurium and Escherichia coli”, J. Bacteriol., 153 (1983), 1548–1551 (data obrascheniya: 07.06.2015) http://jb.asm.org/content/153/3/1548.full.pdf

[12] Lee E. M., Ahn S. H., Park J. H., Lee J. H., Ahn S. C., Kong I. S., “Identification of oligopeptide permease (opp) gene cluster in Vibrio fluvialis and characterization of biofilm production by oppA knockout mutation”, FEMS Microbiol Lett., 240 (2004), 21–30 | DOI

[13] Kashiwagi K., Tsuhako M. H., Sakata K., Saisho T., Igarashi A., da Costa S. O., Igarashi K., “Relationship between spontaneous aminoglycoside resistance in Escherichia coli and a decrease in oligopeptide binding protein”, J. Bacteriol., 180 (1998), 5484–5488 (data obrascheniya: 07.06.2015) http://jb.asm.org/content/180/20/5484.full.pdf

[14] Yu D., Pi B., Yu M., Wang Y., Ruan Z., Feng Y., Yu Y., “Diversity and evolution of oligopeptide permease systems in staphylococcal species”, Genomics, 104 (2014), 8–13 | DOI

[15] Berntsson R. P., Smits S. H., Schmitt L., Slotboom D. J., Poolman B., “A structural classification of substrate-binding proteins”, FEBS Lett., 584 (2010), 2606–2617 | DOI

[16] Medrano M. S., Ding Y., Wang X. G., Lu P., Coburn J., Hu L. T., “Regulators of expression of the oligopeptide permease A proteins of Borrelia burgdorferi”, J. Bacteriol., 189 (2007), 2653–2659 | DOI

[17] Pletzer D., Lafon C., Braun Y., Kohler T., Page M. G., Mourez M., Weingart H., “Highthroughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa”, PLoS ONE, 9 (2014), e111311 | DOI

[18] RegulonDB, (data obrascheniya: 07.06.2015) http://regulondb.ccg.unam.mx

[19] Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muniz-Rascado L., Garcia-Sotelo J. S., Weiss V., Solano-Lira H., Martinez-Flores I., Medina-Rivera A., Salgado-Osorio G., Alquicira-Hernandez S., Alquicira-Hernandez K., Lopez-Fuentes A., Porron-Sotelo L., Huerta A. M., Bonavides-Martinez C., Balderas-Martinez Y. I., Pannier L., Olvera M., Labastida A., Jimenez-Jacinto V., Vega-Alvarado L., Del MoralChavez V., Hernandez-Alvarez A., Morett E., Collado-Vides J., “RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more”, Nucl. Acids Res., 41 (2013), D203–D213 | DOI

[20] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons from genome-scale promoter mapping”, Nucl. Acids Res., 37 (2009), 4919–4931 | DOI

[21] Panyukov V. V., Kiselev S. S., Shavkunov K. S., Masulis I. S., Ozolin O. N., “Multispetsifichnye promotornye ostrovki kak uchastki genoma s neobychnymi strukturnymi i funktsionalnymi svoistvami”, Matematicheskaya biologiya i bioinformatika, 8 (2013), 432–448 | DOI

[22] GenBank Catalog of Bacterial Genomes, (data obrascheniya: 07.06.2015) ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

[23] Kiselev S. S., Ozolin O. N., “Strukturoobrazuyuschie moduli kak indikatory promotornoi DNK v bakterialnykh genomakh”, Matematicheskaya biologiya i bioinformatika, 6 (2011), 39–52 | DOI | Zbl

[24] Woese C. R., Fox G. E., “Phylogenetic structure of the prokaryotic domain: the primary kingdoms”, Proc. Natl. Acad. Sci. USA, 74 (1977), 5088–5090 | DOI

[25] Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., “MEGA6: Molecular Evolutionary Genetics Analysis version 6.0”, Mol. Biol. Evol., 30 (2013), 2725–2729 | DOI

[26] Tamura K., Nei M., “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees”, Mol. Biol. Evol., 10 (1993), 512–526 (data obrascheniya: 07.06.2015) http://mbe.oxfordjournals.org/content/10/3/512.full.pdf

[27] Ozoline O. N., Tsyganov M. A., “Structure of open promoter complexes with Escherichia coli RNA polymerase as revealed by the DNaseI footprinting technique: compilation analysis”, Nucl. Acids Res., 23 (1995), 4533–4541 | DOI

[28] Panyukov V. V., Ozoline O. N., “Promoters of Escherichia coli versus promoter islands: function and structure comparison”, PLoS ONE, 8 (2013), e62601 | DOI

[29] Wang L., Wang F. F., Qian W., “Evolutionary rewiring and reprogramming of bacterial transcription regulation”, J. Genet. Genomics, 38 (2011), 279–288 | DOI

[30] Porcelli I., Reuter M., Pearson B. M., Wilhelm T., van Vliet A. H., “Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria”, BMC Genomics, 14 (2013), 616 | DOI

[31] EMBOSS Needle, (data obrascheniya: 07.06.2015) http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html

[32] Needleman S. B., Wunsch C. D., “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, J. Mol. Biol., 48 (1970), 443–453 | DOI

[33] EMBOSS Water, (data obrascheniya: 07.06.2015) http://www.ebi.ac.uk/Tools/psa/emboss_water/nucleotide.html

[34] Smith T. F., Waterman M. S., “Identification of common molecular subsequences”, J. Mol. Biol., 147 (1981), 195–197 | DOI

[35] Microbial Nucleotide BLAST, (data obrascheniya: 07.06.2015) http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes

[36] EMBOSS Matcher, (data obrascheniya: 07.06.2015) http://www.ebi.ac.uk/Tools/psa/emboss_matcher/nucleotide.html