Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2015_10_2_a2, author = {N. A. Sukharicheva and S. S. Kiselev and O. N. Ozoline and I. S. Masulis}, title = {Transcriptional landscape variability within the bacterial {\emph{oppA-oppB}} intergenic region as revealed by computational search for the potential starts of {RNA} synthesis}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {294--308}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/} }
TY - JOUR AU - N. A. Sukharicheva AU - S. S. Kiselev AU - O. N. Ozoline AU - I. S. Masulis TI - Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis JO - Matematičeskaâ biologiâ i bioinformatika PY - 2015 SP - 294 EP - 308 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/ LA - ru ID - MBB_2015_10_2_a2 ER -
%0 Journal Article %A N. A. Sukharicheva %A S. S. Kiselev %A O. N. Ozoline %A I. S. Masulis %T Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis %J Matematičeskaâ biologiâ i bioinformatika %D 2015 %P 294-308 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/ %G ru %F MBB_2015_10_2_a2
N. A. Sukharicheva; S. S. Kiselev; O. N. Ozoline; I. S. Masulis. Transcriptional landscape variability within the bacterial \emph{oppA-oppB} intergenic region as revealed by computational search for the potential starts of RNA synthesis. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 294-308. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a2/
[1] Ames G. F.-L., Mimura C., Shyamala V., “Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human traffic ATPases”, FEMS Microbiol. Rev., 75 (1990), 429–446 | DOI
[2] Davidson A. L., Dassa E., Orelle C., Chen J., “Structure, function, and evolution of bacterial ATP-binding cassette systems”, Microbiol. Mol. Biol. Rev., 72 (2008), 317–364 | DOI
[3] Gilson E., Higgins C. F., Hofnung M., Ames G. F.-L., Nikaido H., “Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli”, J. Biol. Chem., 257 (1982), 9915–9918 (data obrascheniya: 07.06.2015) http://www.jbc.org/content/257/17/9915.full.pdf
[4] Navarro C., Wu L. F., Mandrand-Berthelot M. A., “The nik operon of Escherichia coli encodes a periplasmic binding protein-dependent transport system for nickel”, Mol. Microbiol., 9 (1993), 1181–1191 | DOI
[5] Koster W., “ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B-12”, Res. Microbiol., 152 (2001), 291–301 | DOI
[6] Henderson D. P., Payne S. M., “Vibrio cholerae iron transport system: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems”, Infect. Immun., 62 (1994), 5120–5125 (data obrascheniya: 07.06.2015) http://iai.asm.org/content/62/11/5120.full.pdf
[7] Rodriguez G. M., Smith I., “Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis”, J. Bacteriol., 188 (2006), 424–430 | DOI
[8] Saier M. H., Reddy V. S., Tamang D. G., Vastermark A., “The transporter classification database”, Nucl. Acids Res., 42 (2014), D251–D258 | DOI
[9] Transporter Classification Database, (data obrascheniya: 07.06.2015) http://www.tcdb.org
[10] Hiles I. D., Gallagher M. P., Jamieson D. J., Higgins C. F., “Molecular characterization of the oligopeptide permease of Salmonella typhimurium”, J. Mol. Biol., 195 (1987), 125–142 | DOI
[11] Hogarth B. G., Higgins C. F., “Genetic organization of the oligopeptide permease (opp) locus of Salmonella typhimurium and Escherichia coli”, J. Bacteriol., 153 (1983), 1548–1551 (data obrascheniya: 07.06.2015) http://jb.asm.org/content/153/3/1548.full.pdf
[12] Lee E. M., Ahn S. H., Park J. H., Lee J. H., Ahn S. C., Kong I. S., “Identification of oligopeptide permease (opp) gene cluster in Vibrio fluvialis and characterization of biofilm production by oppA knockout mutation”, FEMS Microbiol Lett., 240 (2004), 21–30 | DOI
[13] Kashiwagi K., Tsuhako M. H., Sakata K., Saisho T., Igarashi A., da Costa S. O., Igarashi K., “Relationship between spontaneous aminoglycoside resistance in Escherichia coli and a decrease in oligopeptide binding protein”, J. Bacteriol., 180 (1998), 5484–5488 (data obrascheniya: 07.06.2015) http://jb.asm.org/content/180/20/5484.full.pdf
[14] Yu D., Pi B., Yu M., Wang Y., Ruan Z., Feng Y., Yu Y., “Diversity and evolution of oligopeptide permease systems in staphylococcal species”, Genomics, 104 (2014), 8–13 | DOI
[15] Berntsson R. P., Smits S. H., Schmitt L., Slotboom D. J., Poolman B., “A structural classification of substrate-binding proteins”, FEBS Lett., 584 (2010), 2606–2617 | DOI
[16] Medrano M. S., Ding Y., Wang X. G., Lu P., Coburn J., Hu L. T., “Regulators of expression of the oligopeptide permease A proteins of Borrelia burgdorferi”, J. Bacteriol., 189 (2007), 2653–2659 | DOI
[17] Pletzer D., Lafon C., Braun Y., Kohler T., Page M. G., Mourez M., Weingart H., “Highthroughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa”, PLoS ONE, 9 (2014), e111311 | DOI
[18] RegulonDB, (data obrascheniya: 07.06.2015) http://regulondb.ccg.unam.mx
[19] Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muniz-Rascado L., Garcia-Sotelo J. S., Weiss V., Solano-Lira H., Martinez-Flores I., Medina-Rivera A., Salgado-Osorio G., Alquicira-Hernandez S., Alquicira-Hernandez K., Lopez-Fuentes A., Porron-Sotelo L., Huerta A. M., Bonavides-Martinez C., Balderas-Martinez Y. I., Pannier L., Olvera M., Labastida A., Jimenez-Jacinto V., Vega-Alvarado L., Del MoralChavez V., Hernandez-Alvarez A., Morett E., Collado-Vides J., “RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more”, Nucl. Acids Res., 41 (2013), D203–D213 | DOI
[20] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons from genome-scale promoter mapping”, Nucl. Acids Res., 37 (2009), 4919–4931 | DOI
[21] Panyukov V. V., Kiselev S. S., Shavkunov K. S., Masulis I. S., Ozolin O. N., “Multispetsifichnye promotornye ostrovki kak uchastki genoma s neobychnymi strukturnymi i funktsionalnymi svoistvami”, Matematicheskaya biologiya i bioinformatika, 8 (2013), 432–448 | DOI
[22] GenBank Catalog of Bacterial Genomes, (data obrascheniya: 07.06.2015) ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
[23] Kiselev S. S., Ozolin O. N., “Strukturoobrazuyuschie moduli kak indikatory promotornoi DNK v bakterialnykh genomakh”, Matematicheskaya biologiya i bioinformatika, 6 (2011), 39–52 | DOI | Zbl
[24] Woese C. R., Fox G. E., “Phylogenetic structure of the prokaryotic domain: the primary kingdoms”, Proc. Natl. Acad. Sci. USA, 74 (1977), 5088–5090 | DOI
[25] Tamura K., Stecher G., Peterson D., Filipski A., Kumar S., “MEGA6: Molecular Evolutionary Genetics Analysis version 6.0”, Mol. Biol. Evol., 30 (2013), 2725–2729 | DOI
[26] Tamura K., Nei M., “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees”, Mol. Biol. Evol., 10 (1993), 512–526 (data obrascheniya: 07.06.2015) http://mbe.oxfordjournals.org/content/10/3/512.full.pdf
[27] Ozoline O. N., Tsyganov M. A., “Structure of open promoter complexes with Escherichia coli RNA polymerase as revealed by the DNaseI footprinting technique: compilation analysis”, Nucl. Acids Res., 23 (1995), 4533–4541 | DOI
[28] Panyukov V. V., Ozoline O. N., “Promoters of Escherichia coli versus promoter islands: function and structure comparison”, PLoS ONE, 8 (2013), e62601 | DOI
[29] Wang L., Wang F. F., Qian W., “Evolutionary rewiring and reprogramming of bacterial transcription regulation”, J. Genet. Genomics, 38 (2011), 279–288 | DOI
[30] Porcelli I., Reuter M., Pearson B. M., Wilhelm T., van Vliet A. H., “Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria”, BMC Genomics, 14 (2013), 616 | DOI
[31] EMBOSS Needle, (data obrascheniya: 07.06.2015) http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html
[32] Needleman S. B., Wunsch C. D., “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, J. Mol. Biol., 48 (1970), 443–453 | DOI
[33] EMBOSS Water, (data obrascheniya: 07.06.2015) http://www.ebi.ac.uk/Tools/psa/emboss_water/nucleotide.html
[34] Smith T. F., Waterman M. S., “Identification of common molecular subsequences”, J. Mol. Biol., 147 (1981), 195–197 | DOI
[35] Microbial Nucleotide BLAST, (data obrascheniya: 07.06.2015) http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes
[36] EMBOSS Matcher, (data obrascheniya: 07.06.2015) http://www.ebi.ac.uk/Tools/psa/emboss_matcher/nucleotide.html