Estimate of the free energy using calculations of dynamics in the semiclassical Holstein model
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 562-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

We considered two ways of finding the free energy, using thermodynamic equilibrium characteristics, which are calculated by direct computational experiments. The results of calculations are described for homogeneous nucleotide dimers AA, GG and TT. Both of these methods yield similar results for biologically relevant temperatures.
@article{MBB_2015_10_2_a16,
     author = {V. D. Lakhno and N. S. Fialko},
     title = {Estimate of the free energy using calculations of dynamics in the semiclassical {Holstein} model},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {562--566},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a16/}
}
TY  - JOUR
AU  - V. D. Lakhno
AU  - N. S. Fialko
TI  - Estimate of the free energy using calculations of dynamics in the semiclassical Holstein model
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 562
EP  - 566
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a16/
LA  - ru
ID  - MBB_2015_10_2_a16
ER  - 
%0 Journal Article
%A V. D. Lakhno
%A N. S. Fialko
%T Estimate of the free energy using calculations of dynamics in the semiclassical Holstein model
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 562-566
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a16/
%G ru
%F MBB_2015_10_2_a16
V. D. Lakhno; N. S. Fialko. Estimate of the free energy using calculations of dynamics in the semiclassical Holstein model. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 562-566. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a16/

[1] Lakhno V. D., “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108:11 (2008), 1970 | DOI

[2] Chakraborty T. (ed.), Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology, NanoScience and Technology, XVIII, Springer, Berlin–Heidelberg–New York, 2007 | DOI

[3] Lakhno V. D., Fialko N. S., “O dinamike polyarona v klassicheskoi tsepochke s konechnoi temperaturoi”, ZhETF, 147 (2015), 142–148 | DOI

[4] Holstein T., “Studies of polaron motion. Part I: The molecular-crystal model”, Annals of Physics, 8 (1959), 325–342 | DOI | Zbl

[5] Fialko N., Lakhno V., “Nonlinear dynamics of excitations in DNA”, Phys. Lett. A, 278 (2000), 108–111 | DOI

[6] Alexandre S. S., Artacho E., Soler J. M., Chacham H., “Small polarons in dry DNA”, Phys. Rev. Lett., 91 (2003), 108105 | DOI

[7] Wang Y., Fu L., Wang K.-L., “Extended Holstein small polaron model for charge transfer in dry DNA”, Biophys. Chem., 119 (2006), 107 | DOI

[8] Turg P., Lantelme F., Friedman H. L., “Brownian dynamics: Its application to ionic solutions”, J. Chem. Phys., 66:7 (1977), 3039–3044 | DOI

[9] Helfand E., “Brownian dynamics study of transitions in a polymer chain of bistable oscillators”, J. Chem. Phys., 69 (1978), 1010–1018 | DOI

[10] Voityuk A. A., Rösch N., Bixon M., Jortner J., “Electronic coupling for charge transfer and transport in DNA”, J. Phys. Chem. B, 104 (2000), 9740 | DOI

[11] Jortner J., Bixon M., Voityuk A. A., Rösch N., “Superexchange mediated charge hopping in DNA”, J. Phys. Chem. A, 106 (2002), 7599 | DOI

[12] Schuster G. B., “Long-range charge transfer in DNA: Transient structural distortions control the distance dependence”, Acc. Chem. Res., 33 (2000), 253 | DOI

[13] Lakhno V. D., “Nonlinear models in DNA conductivity”, Modern Methods for Theoretical Physical Chemistry of Biopolymers, eds. Starikov E. B., Tanaka S., Lewis J. P., Elsevier Science, 2006, 461–481 | DOI

[14] Lomdahl P. S., Kerr W. C., Do Davydov soliton exists at 300 K?, Phys. Rev. Lett., 55:11 (1985), 1235–1238 | DOI