Mathematical model of the humoral immune response: focusing on Th17 autoimmunity
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 455-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to development of mathematical model, describing processes of Th and B lymphocyte proliferation and differentiation, as well as IFN-$\gamma$, IL-2, IL-4 and IL-21 cytokine secretion. New approaches are suggested, allowing more accurate modelling. Special attention paid to Th17 lymphocyte impact to effect of plasma cells and IgM and IgG antibody level increasing.
@article{MBB_2015_10_2_a12,
     author = {S. R. Kuznetsov},
     title = {Mathematical model of the humoral immune response: focusing on {Th17} autoimmunity},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {455--472},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a12/}
}
TY  - JOUR
AU  - S. R. Kuznetsov
TI  - Mathematical model of the humoral immune response: focusing on Th17 autoimmunity
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 455
EP  - 472
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a12/
LA  - en
ID  - MBB_2015_10_2_a12
ER  - 
%0 Journal Article
%A S. R. Kuznetsov
%T Mathematical model of the humoral immune response: focusing on Th17 autoimmunity
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 455-472
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a12/
%G en
%F MBB_2015_10_2_a12
S. R. Kuznetsov. Mathematical model of the humoral immune response: focusing on Th17 autoimmunity. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 455-472. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a12/

[1] Kuznetsov S. R., Shishkin V. I., “Mathematical modelling as a tool for theoretical research in immunology: advances and perspectives”, Cytokines and inflammation, 11 (2012), 5–13 (in Russ.)

[2] Kuznetsov S. R., Shishkin V. I., “A consolidated view of proliferation and differentiation processes of CD4+ T-lymphocytes: a mathematical model”, Russian Journal of Immunology, 7:2–3 (2013), 176–177 (in Russ.)

[3] Kuznetsov S. R., “Mathematical model of activation, proliferation and differentiation of T- and B-lymphocytes in process of their interactions in lymph node describing switching of synthesis immunoglobulin isotypes IgM and IgG”, The XLIV Annual International Conference Control Processes and Stability (CPS'13) (St. Petersburg, 1–4 April, 2013), eds. Smirnov N. V., Smirnova T. E., The publishing house of St. Petersburg State University, St. Petersburg, 2013, 339–344 (in Russ.)

[4] Khaitov R. M., Yarilin A. A., Pinegin B. V., Atlas of Immunology, GeotarMedia, M., 2011, 624 pp. (in Russ.)

[5] Anderson P., “Post-transcriptional control of cytokine production”, Nat Immunol., 9 (2008), 353–359 | DOI

[6] Grogan J. L., Mohrs M., Harmon B., Lacy D. A., Sedat J. W., Locksley R. M., “Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets”, Immunity, 14 (2001), 205–215 | DOI

[7] Lee H. Y., Perelson A. S., “Modeling T cell proliferation and death in vitro based on labeling data: generalizations of the Smith–Martin cell cycle model”, Bull. Math. Biol., 70 (2008), 21–44 | DOI | MR | Zbl

[8] Luzyanina T., Roose D., Schenkel T., Sester M., Ehl S., Meyerhans A., Bocharov G., “Numerical modelling of label-structured cell population growth using CFSE distribution data”, Theor. Biol. Med. Model., 4 (2007), 26 | DOI

[9] Banks H. T., Charles F., Jauffret M. D., Sutton K. L., Thompson W. C., “Label Structured Cell Proliferation Models”, Appl. Math. Lett., 23 (2010), 1412–1415 | DOI | MR | Zbl

[10] Banks H. T., Sutton K. L., Clayton Thompson W., Bocharov G., Doumic M., Schenkel T., Argilaguet J., Giest S., Peligero C., Meyerhans A., “A new model for the estimation of cell proliferation dynamics using CFSE data”, J. Immunol. Methods, 373 (2011), 143–160 | DOI

[11] McKendrick A. G., “Applications of mathematics to medical problems”, Proceedings of the Edinburgh Mathematical Society, 44 (1926), 98–130 | DOI

[12] Von Foerster H., “Some remarks on changing populations”, The Kinetics of Cellular Proliferation, ed. Stohlman F., Grune and Stratton, New York, 1959, 382–407

[13] Wigginton J. E., Kirschner D., “A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis”, J. Immunol., 166 (2001), 1951–1967 | DOI

[14] Kum W. W., Cameron S. B., Hung R. W., Kalyan S., Chow A. W., “Temporal sequence and kinetics of proinflammatory and anti-inflammatory cytokine secretion induced by toxic shock syndrome toxin 1 in human peripheral blood mononuclear cells”, Infect. Immun., 69 (2001), 7544–7549 | DOI

[15] Feinerman O., Jentsch G., Tkach K. E., Coward J. W., Hathorn M. M., Sneddon M. W., Emonet T., Smith K. A., Bonnet G. A., “Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response”, Mol. Syst. Biol., 6 (2010), 437 | DOI

[16] Busse D., Rosa M., Hobiger K., Thurley K., Flossdorf M., Scheffold A., Höfer T., “Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments”, Proc. Natl. Acad. Sci. USA, 107 (2010), 3058–3063 | DOI

[17] Yates A., Callard R., Stark J., “Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making”, J. Theor. Biol., 231 (2004), 181–196 | DOI | MR

[18] Severins M., Borghans J. A., DeBoer R. J., “The role of Th1/Th2 phenotypes in T cell vaccination: insights from a mathematical model”, T-Cell Vaccination, eds. J. Zhang, R. R. Cohen, Nova Science Publishers, New York, 2008, 139–158

[19] Van den Ham H. J., de Boer R. J., “Cell division curtails helper phenotype plasticity and expedites helper T-cell differentiation”, Immunol. Cell. Biol., 90 (2012), 860–868 | DOI

[20] Romanovsky Y. M., Stepanova M. V., Chernavsky D. S., Mathematical Modelling in Biophysics, Nauka, M., 1975, 344 pp. (in Russ.)

[21] Murphy K. M., Stockinger B., “Effector T cell plasticity: flexibility in the face of changing circumstances”, Nat. Immunol., 11 (2010), 674–680 | DOI

[22] Bettelli E., Korn T., Kuchroo V. K., “Th17: the third member of the effector T cell trilogy”, Curr. Opin. Immunol., 19 (2007), 652–657 | DOI

[23] Crispin J. C., Liossis S. C., Toth K. K., Lieberman L. A., Kyttaris V. C., Yuang-Taung Juang, Tsokos G. C., “Pathogenesis of human systemic lupus erythematosus: recent advances”, Trends Mol. Med., 16 (2010), 47–57 | DOI

[24] Funk G. A., Barbour A. D., Hengartner H., Kalinke U., “Mathematical model of a virusneutralizing immunglobulin response”, J. Theor. Biol., 195 (1998), 41–52 | DOI

[25] Hamilton R. G., “Human IgG subclass measurements in the clinical laboratory”, Clin. Chem., 33 (1987), 1707–1725

[26] Macallan D. C., Wallace D. L., Zhang Y., Ghattas H., Asquith B., de Lara C., Worth A., Panayiotakopoulos G., Griffin G. E., Tough D. F., Beverley P. C., “B-cell kinetics in humans: rapid turnover of peripheral blood memory cells”, Blood, 105 (2005), 3633–3640 | DOI

[27] De Boer R. J., Perelson A. S., “Quantifying T lymphocyte turnover”, J. Theor. Biol., 327 (2013), 45–87 | DOI | MR | Zbl

[28] Davies K. A., Peters A. M., Beynon H. L., Walport M. J., “Immune complex processing in patients with systemic lupus erythematosus. In vivo imaging and clearance studies”, J. Clin. Invest., 90 (1992), 2075–2083 | DOI

[29] Keşmir C., de Boer R. J., “A mathematical model on germinal center kinetics and termination”, J. Immunol., 163 (1999), 2463–2469

[30] Iber D., Maini P. K., “A mathematical model for germinal centre kinetics and affinity maturation”, J. Theor. Biol., 219 (2002), 153–175 | DOI | MR

[31] Hazenberg M. D., Borghans J. A., de Boer R. J., Miedema F., “Thymic output: a bad TREC record”, Nat. Immunol., 4 (2003), 97–99 | DOI

[32] Romanyukha A. A., Rudnev S. G., Sidorov I. A., “Energy cost of infection burden: an approach to understanding the dynamics of host-pathogen interactions”, J. Theor. Biol., 241 (2006), 1–13 | DOI | MR

[33] Buchholz V. R., Flossdorf M., Hensel I., Kretschmer L., Weissbrich B., Gräf P., Verschoor A., Schiemann M., Höfer T., Busch D. H., “Disparate individual fates compose robust CD8+ T cell immunity”, Science, 340 (2013), 630–635 | DOI

[34] Hodgkin P. D., Lee J. H., Lyons A. B., “B cell differentiation and isotype switching is related to division cycle number”, J. Exp. Med., 184 (1996), 277–281 | DOI

[35] Doreau A., Belot A., Bastid J., Riche B., Biemont M. T., Ranchin B., Fabien N., Cochat P., Noble C. P., Trolliet P., Durieu I., Tebib J., Kassai B., Ansieau S., Puisieux A., Eliaou J. F., Bérard N. B., “Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus”, Nat. Immunol., 10 (2009), 778–785 | DOI

[36] Rogers K., Blood: Physiology and Circulation, Rosen Publishing Group, New York, 2010, 241 pp.

[37] Caprioli F., Sarra M., Caruso R., Stolfi C., Fina D., Sica G., MacDonald T. T., Pallone F., Monteleone G., “Autocrine regulation of IL-21 production in human T lymphocytes”, J. Immunol., 180 (2008), 1800–1807 | DOI

[38] Boris J. P., Book D. L., “Flux-corrected transport. III: Minimal-error FCT algorithms”, J. Comp. Phys., 20 (1976), 397–431 | DOI | Zbl

[39] Guerra S. G., Vyse T. J., Graham D. S. C., “The genetics of lupus: a functional perspective”, Arthritis Res. Ther., 14 (2012), 211 | DOI

[40] Kuznetsov S. R., Shishkin V. I., Lykosov V. M., “The effect of Th17 immune response on the antibodies formation dynamics in systemic lupus erythematosus (SLE): a computational modeling experience”, Proceedings of the 5th International Conference on Mathematical Biology and Bioinformatics, ed. Lakhno V. D., MAKS Press, M., 2014, 154–155 (in Russ.)

[41] Kuznetsov S. R., Shishkin V. I., “Mathematical model of systemic lupus erythematosus (SLE) development: focus on the dynamics of immune complex formation and Th17 immune response”, Report on the 12th Dresden Symposium on Autoantibodies (September 23–26, 2015), eds. Conrad K., Sack U., Pabst Science Publishers, Lengerich, 2015, 140–141