Inclusion of the most important multi-particle interactions in the amber force field and application of the revised force field to molecular dynamics calculations
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 427-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas for calculation of energy and forces in the new force field of nonbonded interactions including along with traditional members, the polarization, induced by partial atomic charges, and three-particle dispersive interactions of the atoms with covalent bonds are received. The corresponding new members are added to a standard AMBER force field. Molecular dynamics calculations with the use of the updated force field are carried out. It is shown that additional physically reasonable members, taking into account the major three-particle interactions, not strongly slow down molecular dynamics simulation.
@article{MBB_2015_10_2_a10,
     author = {N. K. Balabaev and S. A. Garbuzinskiy and O. V. Galzitskaya and A. V. Glyakina and B. T. Matkarimov and A. V. Finkelstein},
     title = {Inclusion of the most important multi-particle interactions in the amber force field and application of the revised force field to molecular dynamics calculations},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {427--435},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a10/}
}
TY  - JOUR
AU  - N. K. Balabaev
AU  - S. A. Garbuzinskiy
AU  - O. V. Galzitskaya
AU  - A. V. Glyakina
AU  - B. T. Matkarimov
AU  - A. V. Finkelstein
TI  - Inclusion of the most important multi-particle interactions in the amber force field and application of the revised force field to molecular dynamics calculations
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 427
EP  - 435
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a10/
LA  - ru
ID  - MBB_2015_10_2_a10
ER  - 
%0 Journal Article
%A N. K. Balabaev
%A S. A. Garbuzinskiy
%A O. V. Galzitskaya
%A A. V. Glyakina
%A B. T. Matkarimov
%A A. V. Finkelstein
%T Inclusion of the most important multi-particle interactions in the amber force field and application of the revised force field to molecular dynamics calculations
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 427-435
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a10/
%G ru
%F MBB_2015_10_2_a10
N. K. Balabaev; S. A. Garbuzinskiy; O. V. Galzitskaya; A. V. Glyakina; B. T. Matkarimov; A. V. Finkelstein. Inclusion of the most important multi-particle interactions in the amber force field and application of the revised force field to molecular dynamics calculations. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 427-435. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a10/

[1] Shaw D. E., Maragakis P., Lindorff-Larsen K., Piana S., Dror R. O., Eastwood M. P., Bank J. A., Jumper J. M., Salmon J. K., Shah Y., Wriggers W., “Atom-level characterization of structural dynamics of proteins”, Science, 330 (2010), 341–346 | DOI

[2] Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J. L., Dror R. O., Shaw D. E., “Improved side-chain torsion potentials for the Amber ff99SB protein force field”, Proteins, 78 (2010), 1950–1958

[3] Levitt M., Hirshberg M., Sharon R., Daggett V., “Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution”, Comput. Phys. Commun., 91 (1995), 215–231 | DOI

[4] MacKerell A. D., Jr., Bashford D., Bellott M., Dunbrack R. L., Jr., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F. T. K., Mattos C., Michnick S., Ngo T., Nguyen D. T., Prodhom B., Reiher W. E., III, Roux B., Schlenkrich M., Smith J. C., Stote R., Straub J., Watanabe M., Wiorkiewicz-Kuczera J., Yin D., Karplus M., “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, J. Phys. Chem. B, 102 (1998), 3586–3616 | DOI

[5] Jorgensen W. L., Maxwell D. S., Tirado-Rives J., “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids”, J. Am. Chem. Soc., 118 (1996), 11225–11236 | DOI

[6] Halgren T. A., “Merck Molecular Force Field. I: Basis, form, parameterization and performance of MMFF94”, J. Comput. Chem., 17 (1995), 490–519 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[7] Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A., “Development and testing of a general Amber force fields”, J. Comput. Chem., 25 (2004), 1157–1174 | DOI

[8] Finkelstein A. V., “Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding”, Chem. Central J., 1 (2007), 21 | DOI

[9] Finkelstein A. V., Lobanov M. Y., Dovidchenko N. V., Bogatyreva N. S., “Many-atom Van Der Waals interactions lead to direction-sensitive interactions of covalent bonds”, J. Bioinform. Comput. Biol., 6 (2008), 693–707 | DOI

[10] Pereyaslavets L. B., Finkelshtein A. V., “Silovoe pole FFSol dlya rascheta vzaimodeistvii molekul v vodnom okruzhenii”, Mol. biol., 44 (2010), 340–354 | Zbl

[11] Pereyaslavets L. B., Finkelstein A. V., “Development and testing of PFFsol_1, a new polarizable atomic force field for calculation of molecular interactions in implicit water environment”, J. Phys. Chem. B, 116 (2012), 4646–4654 | DOI

[12] Piana S., Klepeis J. L., Shaw D. E., “Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations”, Curr. Opin. Struct. Biol., 24 (2014), 98–105 | DOI

[13] Wang J., Cieplak P., Kollman P. A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, J. Comput. Chem., 21 (2000), 1049–1074 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[14] Still W. C., Tempczyk A., Hawley R. C., Hendrickson T., “Semianalytical treatment of solvation for molecular mechanics and dynamics”, J. Am. Chem. Soc., 112 (1990), 6127–6129 | DOI

[15] Axilrod B. M., Teller E., “Interaction of the van der Waals' type between three atoms”, J. Chem. Phys., 11 (1943), 299–300 | DOI

[16] Glyakina A. V., Balabaev N. K., Galzitskaya O. V., “Two-, three-, and four-state events occur in the mechanical unfolding of small protein L using molecular dynamics simulation”, Protein Pept. Lett., 17 (2010), 92–103 | DOI

[17] Garbuzinskii S. A., Matkarimov B. T., Finkelshtein A. V., “Vklyuchenie vazhneishikh mnogochastichnykh vzaimodeistvii v silovoe pole AMBER i optimizatsiya energeticheskikh parametrov obnovlennogo polya”, Matematicheskaya biologiya i bioinformatika (to appear)

[18] Allen F. H., “The Cambridge Structural Database: a quarter of a million crystal structures and rising”, Acta Crystallogr. B, 58 (2002), 380–388 | DOI

[19] Bacon G. E., Curry N. A., Wilson S. A., “Crystallographic study of solid benzene by neutron diffraction”, Proc. R. Soc. London, A279 (1964), 98–110 | DOI

[20] Neuman A., Gillier-Pandraud H., “Structures cristallines des diméthyl-2,3 et 2,5-phénols à -150$^\circ$ C”, Acta Crystallogr. B, 29 (1973), 1017–1023 | DOI

[21] Goddard R., Heinemann O., Krüger C., “Pyrrole and a co-crystal of 1H- and 2H-1,2,3-triazole”, Acta Crystallogr. C, 53 (1997), 1846–1850 | DOI

[22] Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Clarendon, Oxford, 1987