Research of mechanical characteristics of bone tissues by means of the developed automated system of medical appointment
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 548-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

The presented system of medical appointment allows building of solid-state models of bone and soft tissues on the basis of computer tomogram data. These models are able to take into account anisotropy of biomechanical properties, to carry out multiple geometrical operations on association of models of bone tissues with various combinations of fixing systems and endoprostheses, to calculate their mechanical characteristics in various physical environments, to carry out the comparative analysis of results of the calculation. The system provides biomechanical justifications of effective methods of diagnostics and treatment of the human musculoskeletal device.
@article{MBB_2015_10_2_a0,
     author = {A. V. Anosov and O. P. Kormilicyn and T. A. Patrina and D. A. Shemelinin},
     title = {Research of mechanical characteristics of bone tissues by means of the developed automated system of medical appointment},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {548--561},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a0/}
}
TY  - JOUR
AU  - A. V. Anosov
AU  - O. P. Kormilicyn
AU  - T. A. Patrina
AU  - D. A. Shemelinin
TI  - Research of mechanical characteristics of bone tissues by means of the developed automated system of medical appointment
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 548
EP  - 561
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a0/
LA  - ru
ID  - MBB_2015_10_2_a0
ER  - 
%0 Journal Article
%A A. V. Anosov
%A O. P. Kormilicyn
%A T. A. Patrina
%A D. A. Shemelinin
%T Research of mechanical characteristics of bone tissues by means of the developed automated system of medical appointment
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 548-561
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a0/
%G ru
%F MBB_2015_10_2_a0
A. V. Anosov; O. P. Kormilicyn; T. A. Patrina; D. A. Shemelinin. Research of mechanical characteristics of bone tissues by means of the developed automated system of medical appointment. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 2, pp. 548-561. http://geodesic.mathdoc.fr/item/MBB_2015_10_2_a0/

[1] Mimics: Medical Image Segmentation for Engineering on Anatomy, (data obrascheniya 15.09.2015) http://biomedical.materialise.com/mimics

[2] Catia V5-6R2014, (data obrascheniya 20.09.2015) http://www.3ds.com/ru/produkty-i-uslugi/catia/produkty/catiav5/

[3] Ansys, (data obrascheniya 20.09.2015) http://www.ansys.com

[4] Microsoft Access — relyatsionnaya SUBD — Microsoft Office, (data obrascheniya 25.09.2015) https://products.office.com/ru-ru/access

[5] Bonfield W., Li C. H., “Anisotropy of nonelastic flow in bone”, J. Appl. Phys., 38 (1967), 2450–2455 | DOI

[6] Evans F. G., Mechanical Properties of Bone, Charles C. Thomas, Springfield, IL, 1973, 282–310

[7] Mather B. S., “The symmetry of the mechanical properties of the human femur”, J. Surg. Res., 5 (1967), 222–229 | DOI

[8] Sedlin E. D., “A rheological model for cortical bone”, Acta Orthop. Scand., 83 (1965), 77

[9] Yamada H., Strength of biological materials, Williams Wilkins, Baltimore, 1970, 283 pp.

[10] Knets I. V., Pfafrod G. O., Saulgozis Yu. Zh., Deformirovanie i razrushenie tverdykh biologicheskikh tkanei, Zinatne, Riga, 1980, 319 pp.

[11] Bruyaka V. A., Fokin V. G., Soldusova E. A. i dr., Inzhenernyi analiz v Ansys Workbench, Uchebnoe posobie, v. I, SGTU, Samara, 2010, 271 pp.

[12] Hansen E., “Modelling heat transfer in a bone-cement-prosthesis system”, Journal of Biomechanics, 36 (2003), 787–795 | DOI

[13] Naseer J., The Morning Echo: An Observation of Nature and Science, iUniverse, Bloomington, 2012, 443–460

[14] Bergmann G., Graichen F., Rohlmann A., Verdonschot N., Lenthe G., “Frictional heating of total hip implants. Part 2: Finite element study”, Journal of Biomechanics, 34:4 (2001), 429–435 | DOI

[15] Biyikli M., Modest M., Tarr R., “Measurements of thermal properties for human femora”, Journal of Biomedical Materials Research, 20:9 (1986), 1335–1345 | DOI

[16] Clattenburg R., Cohen J., Conner S., Cook N., “Thermal properties of cancellous bone”, Journal of Biomedical Materials Research, 9:2 (1975), 169–182 | DOI

[17] Mazzullo S., Paolini M., Verdi C., “Numerical simulation of thermal bone necrosis during cementation of femoral prostheses”, Journal of Mathematical Biology, 29:5 (1991), 475–494 | DOI | Zbl

[18] Huiskes R., “Some fundamental aspects of human joint replacement, analyses of stresses and heat conduction in bone-prosthesis structures”, Acta Orthop. Scand., 185 (1980), 1–208

[19] Zelenov E. S., “Experimental investigation of the thermophysical properties of compact bone”, Mechanics of Composite Materials, 1985, 759–762

[20] Stanczyk M., Telega J., “Modelling of heat transfer in biomechanics — a review. Part II" Orthopaedics”, Acta of Bioengineering and Biomechanics, 4:2 (2002), 3–31

[21] Kaorapapong K., Amornsamankul S., Tang I., Wiwatanapataphee B., “Heat Transfer in Cemented Hip Replacement Process”, International Journal of Mechanics, 5:3 (2011), 202–208

[22] Dobelis M. A., “Otsenka mekhanicheskogo povedeniya kompaktnoi deproteinizirovannoi i demineralizovannoi kostnoi tkani pri rastyazhenii”, Mekhanika kompozitnykh materialov, 1982, no. 6, 1060–1066