Rep-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis
Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 245-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the intergenic regions of the Escherichia coli genome there are 356 REP-elements, containing 1-12 repeated sequences with degenerated consensus. Their biological role is poorly understood, but multiplicity in the genome, preferential localization between convergent genes and ability to form hairpin structures have led to the assumption that REP-elements participate in the transcription termination and processes affecting stability of the corresponding RNAs. Though the direct experiments did not confirm the ability of the model REP-sequence to stop RNA synthesis leaving some ambiguity regarding their primary function. In this study, positional and functional analysis was undertaken for the entire set of annotated REP-sequences and the reduced efficiency of RNA synthesis behind the many REP-modules was observed. However, some REP-modules had no effect on the transcription processivity, assuming the inclusion of REP-sequences into RNA and the possibility of their regulatory action. We also observed REP-associated transcription activation and found overlapping promoters. The most unexpected was specific distribution of REP-sequences nearby promoter islands, which indicates their insulator-like action maintaining functional autonomy of the “islands” and assumes functional significance of “island”-born RNAs.
@article{MBB_2015_10_1_a3,
     author = {N. Yu. Markelova and I. S. Masulis and O. N. Ozoline},
     title = {Rep-elements of the {\emph{Escherichia} coli} genome and transcription signals: positional and functional analysis},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {245--259},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a3/}
}
TY  - JOUR
AU  - N. Yu. Markelova
AU  - I. S. Masulis
AU  - O. N. Ozoline
TI  - Rep-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2015
SP  - 245
EP  - 259
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a3/
LA  - ru
ID  - MBB_2015_10_1_a3
ER  - 
%0 Journal Article
%A N. Yu. Markelova
%A I. S. Masulis
%A O. N. Ozoline
%T Rep-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2015
%P 245-259
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a3/
%G ru
%F MBB_2015_10_1_a3
N. Yu. Markelova; I. S. Masulis; O. N. Ozoline. Rep-elements of the \emph{Escherichia coli} genome and transcription signals: positional and functional analysis. Matematičeskaâ biologiâ i bioinformatika, Tome 10 (2015) no. 1, pp. 245-259. http://geodesic.mathdoc.fr/item/MBB_2015_10_1_a3/

[1] Stern M. J., Ames G. F. L., Smith N. H., Robinson E. C., Higgins C. F., “Repetitive extragenic palindromic sequences: a major component of the bacterial genome”, Cell, 37 (1984), 1015–1026 | DOI

[2] Higgins C. F., McLaren R. S., Newbury S. F., Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion?, J. Gene., 72 (1988), 3–14 | DOI

[3] Stern M. J., Prossnitz E., Ames G. F. L., “Role of the intercistronic region in posttranscriptional control of gene expression in the histidine transport operon of Salmonella typhimurium: involvement of REP sequences”, Mol. Microbiol., 2 (1988), 141–152 | DOI

[4] Espeli O., Moulin L., Boccard F., “Transcription attenuation associated with bacterial repetitive extragenic BIME elements”, Mol. Biol., 314 (2001), 375–386 | DOI

[5] Merino E., Becerril B., Valle F., Bolivar F., “Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Essherihia coli glutamate dehydrogenase affects the stability of its mRNA”, Gene, 58 (1987), 305–309 | DOI

[6] Newbury S. F., Smith N. H., Robinson E. C., HiIes I. D., Higgins C. F., “Stabilization of translationally active mRNA by prokaryotic REP sequences”, Cell, 48 (1987), 297–310 | DOI

[7] Bachellier S., Clement J. M., Hofnung M., “Short palindromic repetitive DNA elements in enterobacteria: a survey”, J. Res. Microbiol., 150 (1999), 627–639 | DOI

[8] Khemici V., Carpousis A. J., “The RNA degradosome and poly(A) polymerase of Escherichia coli are required in vivo for the degradation of small mRNA decay intermediates containing REP-stabilizers”, Mol. Microbiol., 51 (2004), 777–790 | DOI

[9] Ton-Hoang B., Siguier P., Quentin Y., Onillon S., Marty B., Fichant G., Chandler M., “Structuring the bacterial genome: Y1-transposases associated with REP-BIME sequences”, J. Nucleic Acids Res., 40 (2012), 3596–3609 | DOI

[10] Moulin L., Rahmouni A. R., Boccard F., “Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli”, Mol. Microbiol., 55 (2005), 601–610 | DOI

[11] Messing S. A., Ton-Hoang B., Hickman A. B., McCubbin A. J., Peaslee G. F., Ghirlando R., Chandler M., Dyda F., “The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease”, J. Nucleic Acids Res., 40 (2012), 9964–9979 | DOI

[12] Di Nocera P. P., De Gregorio E., Rocco F., “GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes”, J. BMC Genomics, 14 (2013), 522 | DOI

[13] Salgado H., Peralta-Gil M., Gama-Castro S., Santos-Zavaleta A., Muniz-Rascado L., Garcia-Sotelo J. S., Weiss V., Solano-Lira H., Martinez-Flores I., Medina-Rivera A. et al., “RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more”, Nucleic Acids Res., 41 (2013), D203 | DOI

[14] Panyukov V. V., Kiselev S. S., Shavkunov K. S., Masulis I. S., Ozolin O. N., “Multispetsifichnye promotornye ostrovki kak uchastki genoma s neobychnymi strukturnymi i funktsionalnymi svoistvami”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 432–448 | DOI

[15] Kiselev S. S., Ozolin O. N., “Strukturoobrazuyuschie moduli kak indikatory promotornoi DNK v bakterialnykh genomakh”, Matematicheskaya biologiya i bioinformatika, 6:1 (2011), 39–52 | DOI

[16] Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N., “Gains and unexpected lessons from genome-scale promoter mapping”, Nucl. Acids Res., 37 (2009), 4919–4931 | DOI

[17] Reppas N. B., Wade J. T., Church G. M., Struhl K., “The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting”, Mol. Cell., 24 (2006), 747–757 | DOI

[18] NCBI Microbial Nucleotide BLAST, (data obrascheniya: 07.06.2015) http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes

[19] Igarashi K., Ishihama A., “Bipartite functional map of the E. coli RNA polymerase $\alpha$ subunit: involvement of the C-Terminal region in transcription activation by CAMP-CRP”, Cell, 65 (1991), 1015–1022 | DOI

[20] Mathews D. H., “RNA secondary structure analysis using RNA-structure”, Current Protocols in Bioinformatics, 46 (2014), 12.6.1–12.6.25 | DOI

[21] Liang W., Rudd K. E., Deutscher M. P., “A Role for REP sequences in regulating translation”, Mol. Cell., 58:3 (2015), 431–439 | DOI

[22] Brok-Volchanski A. S., Masulis I. S., Shavkunov K. S., Lukyanov V. I., Purtov Yu. A., Kostyanicina E. G., Deev A. A., Ozoline O. N., “Predicting sRNA genes in the genome of E. coli by the promoter-search algorithm PlatProm”, Bioinformatics of Genome Regulation and Structure II, eds. Kolchanov N., Hofestaedt R., Springer, 2005, 11–20 | DOI

[23] Panyukov V. V., Ozoline O. N., “Promoters of Escherichia coli versus promoter islands: function and structure comparison”, PLoS ONE, 8 (2013), e62601 | DOI

[24] Purtov Yu. A., Glazunova O. A., Antipov S. S., Pokusaeva V. O., Fesenko E. E., Preobrazhenskaya V. V., Shavkunov K. S., Tutukina M. N., Lukyanov V. I., Ozoline O. N., “Promoter islands as a platform for interaction with nucleoid proteins and transcription factors”, J. Bioinformatics and Computational Biology, 12:2 (2014), 322–331 | DOI

[25] Vogel J., Bartels V., Tang T. H., Churakov G., Slagter-Jäger J. G., Hüttenhofer A., Wagner E. G., “RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria”, Nucleic Acids Res., 31 (2003), 6435–6443 | DOI

[26] Miyakoshi M., Chao Y., Vogel J., “Cross talk between ABC transporter mRNAs via a target mRNA-derived sponge of the GcvB small RNA”, EMBO J., 34 (2015), 1478–1492 | DOI