The model of interaction between learning and evolutionary optimization
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014), pp. t1-t15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of interaction between learning and evolutionary optimization is designed and investigated. The evolving population of modeled organisms is considered. The mechanism of genetic assimilation of the acquired features during a number of generations of Darwinian evolution is studied. The genetic assimilation means that individually acquired features are “re-invented” by evolution and recorded directly into genotypes of organisms. It is shown that the genetic assimilation takes place as follows: the organism distribution moves towards the optimum at learning and further selection; then genotypes of selected organisms also move towards the optimum. The mechanism of influence of the learning load is analyzed. It is shown that the learning load leads to a significant acceleration of evolution. The hiding effect is also studied; this effect means that a strong learning inhibits the evolutionary search in some situations.
@article{MBB_2014_9_a0,
     author = {V. G. Red'ko},
     title = {The model of interaction between learning and evolutionary optimization},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {t1--t15},
     publisher = {mathdoc},
     volume = {9},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_a0/}
}
TY  - JOUR
AU  - V. G. Red'ko
TI  - The model of interaction between learning and evolutionary optimization
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - t1
EP  - t15
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_a0/
LA  - en
ID  - MBB_2014_9_a0
ER  - 
%0 Journal Article
%A V. G. Red'ko
%T The model of interaction between learning and evolutionary optimization
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P t1-t15
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_a0/
%G en
%F MBB_2014_9_a0
V. G. Red'ko. The model of interaction between learning and evolutionary optimization. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014), pp. t1-t15. http://geodesic.mathdoc.fr/item/MBB_2014_9_a0/

[1] Baldwin J. M., “A new factor in evolution”, American Naturalist, 30 (1896), 441–451 <ext-link ext-link-type='doi' href='https://doi.org/10.1086/276408'>10.1086/276408</ext-link>

[2] Morgan C. L., “On modification and variation”, Science, 4 (1896), 733–740 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.4.99.733'>10.1126/science.4.99.733</ext-link>

[3] Osborn H. F., “Ontogenetic and phylogenetic variation”, Science, 4 (1896), 786–789 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.4.100.786'>10.1126/science.4.100.786</ext-link>

[4] Waddington C. H., “Canalization of development and inheritance of acquired characters”, Nature, 150 (1942), 563–565 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/150563a0'>10.1038/150563a0</ext-link>

[5] Belew R. K., Mitchell M. (eds.), Adaptive Individuals in Evolving Populations: Models and Algorithms, Addison-Wesley, Massachusetts, 1996

[6] Turney P., Whitley D., Anderson R. (eds.), “Evolution, Learning, and Instinct: 100 Years of the Baldwin Effect”, Special Issue of Evolutionary Computation on the Baldwin Effect, 4:3 (1996)

[7] Hinton G. E., Nowlan S. J., “How learning can guide evolution”, Complex Systems, 1 (1987), 495–502 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0651.92015'>0651.92015</ext-link>

[8] Mayley G., “Guiding or hiding: Explorations into the effects of learning on the rate of evolution”, ECAL 97, Proceedings of the Fourth European Conference on Artificial Life, eds. Husbands P., Harvey I., MIT Press, Cambridge, Massachusetts, 1997, 135–144

[9] Ackley D., Littman M., “Interactions between learning and evolution”, Artificial Life II, Proceedings of the Second Artificial Life Workshop, eds. Langton C. G., Taylor C., Farmer J. D., Rasmussen S., Addison-Wesley, Redwood City CA, 1992, 487–509

[10] Red'ko V. G., Mosalov O. P., Prokhorov D. V., “A model of evolution and learning”, Neural Networks, 18:5–6 (2005), 738–745 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.neunet.2005.06.005'>10.1016/j.neunet.2005.06.005</ext-link>

[11] Red'ko V. G., Red'ko O. V., “Bionic model of genetic assimilation of acquired features”, Scientific Session of the Moscow Engineering Physics Institute (National Research Nuclear University)-2010. The XIIth All-Russian Scientific and Technical Conference “Neuroinformatics-2010”, NIIaU MIFI, M., 2010, 191–198 (in Russ.)

[12] Eigen M., “Self-organization of matter and the evolution of biological macromolecules”, Naturwissenschaften, 58:10 (1971), 465–523 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00623322'>10.1007/BF00623322</ext-link>

[13] Eigen M., Schuster P., The Hypercycle — A Principle of Natural Self-Organization, Springer-Verlag, Berlin, 1979

[14] Red'ko V. G., Evolution, Neural Networks, Intelligence. Models and Conceptions of Evolutionary Cybernetics, URSS, M., 2005 (in Russ.)

[15] Red'ko V. G., Tsoy Yu. R., “Estimation of the efficiency of evolution algorithms”, Doklady Mathematics, 72:2 (2005), 810–813

[16] Kimura M., The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge, 1983

[17] Red'ko V. G., Tsoy Yu. R., Bionic Information Systems and their Applications, eds. Kureichik V., Red'ko V., Zinchenko L., Fizmatlit, M., 2011, 110-127 (in Russ.)

[18] Red'ko V. G., “Spin glasses and evolution”, Biophysics, 35:5 (1990), 831–834