Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2014_9_2_a8, author = {A. A. Grinevich and A. V. Tankanag and N. K. Chemeris}, title = {Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of {0.1~Hz}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {341--358}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a8/} }
TY - JOUR AU - A. A. Grinevich AU - A. V. Tankanag AU - N. K. Chemeris TI - Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1~Hz JO - Matematičeskaâ biologiâ i bioinformatika PY - 2014 SP - 341 EP - 358 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a8/ LA - ru ID - MBB_2014_9_2_a8 ER -
%0 Journal Article %A A. A. Grinevich %A A. V. Tankanag %A N. K. Chemeris %T Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1~Hz %J Matematičeskaâ biologiâ i bioinformatika %D 2014 %P 341-358 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a8/ %G ru %F MBB_2014_9_2_a8
A. A. Grinevich; A. V. Tankanag; N. K. Chemeris. Role of elasticity of blood vessels in formation of highly amplitude oscillations of a blood flow with frequency of 0.1~Hz. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 341-358. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a8/
[1] Hoffmann U., Yanar A., Franzeck U. K., Edwards J. M., Bollinger A., “The frequency histogram — a new method for the evaluation of laser Doppler flux motion”, Microvasc. Res., 40 (1990), 293–301 | DOI
[2] Bracic M., Stefanovska A., “Wavelet-based analysis of human blood-flow dynamics”, Bull. Math. Biol., 60 (1998), 919–935 | DOI
[3] Stefanovska A., Bracic M., Kvernmo H. D., “Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique”, IEEE Trans. Biomed. Eng., 46 (1999), 1230–1239 | DOI
[4] Muck-Weymann M. E., Albrecht H. P., Hager D., Hiller D., Hornstein O. P., Bauer R. D., “Respiratory-dependent laser-Doppler flux motion in different skin areas and its meaning to autonomic nervous control of the vessels of the skin”, Microvasc. Res., 52 (1996), 69–78 | DOI
[5] Bollinger A., Yanar A., Hoffmann U., Franzeck U. K., Is high-frequency fluxmotion due to respiration or to vasomotion activity?, Progress in Applied Microcirculation, ed. Messmer K., Karger, Basel, 1993, 52–58
[6] Bertuglia S., Colantuoni A., Intaglietta M., “Effects of L-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters”, Microvasc. Res., 48 (1994), 68–84 | DOI
[7] Landsverk S. A., Kvandal P., Kjelstrup T., Benko U., Bernjak A., Stefanovska A., Kvernmo H., Kirkeboen K. A., “Human skin microcirculation after brachial plexus block evaluated by wavelet transform of the laser Doppler flowmetry signal”, Anesthesiology, 105 (2006), 478–484 | DOI
[8] Bernjak A., Clarkson P. B. M., McClintock P. V.E., Stefanovska A., “Low-frequency blood flow oscillations in congestive heart failure and after OI 1-blockade treatment”, Microvasc. Res., 76 (2008), 224–232 | DOI
[9] Stewart J. M., Taneja I., Goligorsky M. S., Medow M. S., “Noninvasive measure of microvascular nitric oxide function in humans using very low-frequency cutaneous laser Doppler flow spectra”, Microcirculation, 14 (2007), 169–180 | DOI
[10] Kvandal P., Landsverk S. A., Bernjak A., Stefanovska A., Kvernmo H. D., Kirkeboen K. A., “Low-frequency oscillations of the laser Doppler perfusion signal in human skin”, Microvasc. Res., 72 (2006), 120–127 | DOI
[11] Kozlov V. I., “Mekhanizm modulyatsii krovotoka v sisteme mikrotsirkulyatsii i ego rasstroistvo pri gipertonicheskoi bolezni”, Materialy III Vserossiiskogo simpoziuma «Primenenie lazernoi dopplerovskoi floumetrii v meditsinskoi praktike» (Moskva, 2000), 5–15
[12] Kozlov V. I., Sokolov V. G., “Issledovanie kolebanii krovotoka v sisteme mikrotsirkulyatsii”, Materialy II Vserossiiskogo simpoziuma «Primenenie lazernoi doplerovskoi floumetrii v meditsinskoi praktike» (Moskva, 1998), 8–14
[13] Malpas S., “Neural influences on cardiovascular variability: possibilities and pitfalls”, Am. J. Physiol. Heart Circ. Physiol., 282 (2002), H6–H20
[14] Cohen M. A., Taylor J. A., “Short-term cardiovascular oscillations in man: Measuring and modeling the physiologies”, J. Physiol., 542 (2002), 669–683 | DOI
[15] Bernardi L., Hayoz D., Wenzel R., Passino C., Calciati A., Weber R., Noll G., “Synchronous and baroceptor-sensitive oscillations in skin microcirculation: evidence for central autonomic control”, Am. J. Physiol., 273 (1997), H1867–H1878
[16] Stefanovska A., Bracic M., Contemp. Phys., 40, 1999, 31 | DOI
[17] Yan Y., Shen G., Xie K., Tang C., Wu X., Xu Q., Liu J., Song J., Jiang X., Luo E., “Wavelet analysis of acute effects of static magneticfield on resting skin bloodflow at the nail wall in young men”, Microvasc. Res., 82 (2011), 277–283 | DOI
[18] Bernardi L., Porta C., Casucci G., Balsamo R., Bernardi N. F., Fogari R., Sleight P., “Dynamic Interactions Between Musical, Cardiovascular, and Cerebral Rhythms in Humans”, Circulation, 119 (2009), 3171–3180 | DOI
[19] Bernardi L., Porta C., Gabutti A., Spicuzza L., Sleight P., “Modulatory effects of respiration”, Auton. Neurosci. Basic and Clin., 90 (2001), 47–56 | DOI
[20] Cohen M. A., Taylor J. A., “Short-term cardiovascular oscillations in man: measuring and modeling the physiologies”, J. Physiol., 542 (2002), 669–683 | DOI
[21] Kiselev A. R., Gridnev V. I., “Kolebatelnye protsessy v vegetativnoi regulyatsii serdechno-sosudistoi sistemy”, Saratovskii nauchno-meditsinskii zhurnal, 7:1 (2011), 34–39
[22] Liao F., Jan Y.-K., “Enhanced phase synchronization of blood flow oscillations between heated and adjacent non-heated sacral skin”, Med. Biol. Eng. Comput., 50 (2012), 1059–1070 | DOI
[23] Kirilina T. V., Krasnikov G. V., Tankanag A. V., Piskunova G. M., Chemeris N. K., “Prostranstvennaya sinkhronizatsiya kolebanii krovotoka v sisteme mikrotsirkulyatsii kozhi cheloveka”, Regionarnoe krovoobraschenie i mikrotsirkulyatsiya, 8:3 (2009), 32–36
[24] Karavaev A. S., Prokhorov M. D., Ponomarenko V. I., Kiselev A. R., Gridnev V. I., Ruban E. I., Bezruchko B. F., “Synchronization of low-frequency oscillations in the human cardiovascular system”, Chaos, 19 (2009), 033112 | DOI
[25] Prokhorov M. D., Ponomarenko V. I., Gridnev V. I., Bodrov M. B., Bespyatov A. B., “Synchronization between main rhythmic processes in the human cardiovascular system”, Phys. Rev. E., 68 (2003), 041913 | DOI
[26] Kiselev A. R., Gridnev V. I., Prokhorov M. D., Karavaev A. S., Posnenkova O. M., Ponomarenko V. I., Bezruchko B. P., “Selection of optimal dose of beta-blocker treatment in myocardial infarction patients based on changes in synchronization between 0.1 Hz oscillations in heart rate and peripheral microcirculation”, J. Cardiovasc. Med., 13 (2012), 491–498 | DOI
[27] Pedley T. J., The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, London, 1980
[28] Ursino M., “Interaction between carotid baroregulation and the pulsating heart: a mathematical model”, Am. J. Physiol., 275 (1998), H1733–H1747
[29] Ursino M., Magosso E., “Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models”, J. Integr. Neurosci., 2 (2003), 219–247 | DOI
[30] Tsvetkov V. D., “Issledovanie preimuschestv bifurkatsionnogo vetvleniya sosudov dokapillyarnogo uchastka koronarnogo rusla mlekopitayuschikh”, Fundamentalnye issledovaniya, 11 (2012), 61–65
[31] Tsvetkov V. D., Serdtse, zolotoe sechenie i simmetriya, PNTs RAN, Puschino, 1997
[32] (data obrascheniya: 25.06.2014) http://meduniver.com/Medical/Physiology/357.html
[33] Cheng L., Ivanova O., Fan H.-H., Khoo M. C. K., “An integrative model of respiratory and cardiovascular control in sleep-disordered breathing”, Respiratory Physiology Neurobiology, 174 (2010), 4–28 | DOI
[34] Kiselev I. N., Semisalov B. V., Biberdorf E. A., Sharipov R. N., Blokhin A. M., Kolpakov F. A., “Modulnoe modelirovanie serdechno-sosudistoi sistemy cheloveka”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 703–736 | DOI
[35] Krasnikov G. V., Piskunova G. M., Tankanag A. V., Tyurina M. I., Chemeris N. K., “Rezonansno-podobnoe vzaimodeistvie kolebanii krovotoka v mikrotsirkulyatornom rusle kozhi cheloveka pri kontroliruemom dykhanii”, Vestnik novykh meditsinskikh tekhnologii, XVII:4 (2010), 15–17
[36] Tyurina M. I., Krasnikov G. V., Tankanag A. V., Piskunova G. M., Chemeris N. K., “Formirovanie respiratornozavisimykh kolebanii skorosti krovotoka v mikrotsirkulyatornom rusle kozhi cheloveka v usloviyakh kontroliruemogo dykhaniya”, Regionarnoe krovoobraschenie i mikrotsirkulyatsiya, 2011, no. 3, 31–37
[37] Seydnejad S. R., Kitney R. I., “Modeling of Mayer Waves Generation Mechanisms”, IEEE Eng. Med. Biol. Mag., 20:2 (2001), 92–100 | DOI
[38] Ursino M., Magosso E., “Role of short term cardiovascular regulation in heart rate variability: a modeling study”, Am. J. Physiol. Heart Circ. Physiol., 284 (2003), H1473–H1494
[39] Grinchenko V. T., Rudnitskii A. G., “Model vzaimodeistviya serdechno-sosudistoi i respiratornoi sistem”, Akustichnii visnik, 9:3 (2006), 16–26
[40] Yildiz M., Ider Y. Z., “Model based and experimental investigation of respiratory effect on the HRV power spectrum”, Physiol. Meas., 27 (2006), 973–988 | DOI
[41] Grinevich A. A., Tankanag A. V., Chemeris N. K., “Issledovanie zavisimosti spektrov serdechnogo ritma cheloveka ot kontroliruemoi chastoty dykhaniya”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 537–552 | DOI
[42] Krupatkin A. I., “Kolebaniya krovotoka s chastotoi okolo 0.1 gts v mikrososudakh kozhi ne otrazhayut simpaticheskuyu regulyatsiyu ikh tonusa”, Fiziologiya cheloveka, 35:2 (2009), 60–69