Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2014_9_2_a20, author = {S. A. Lashin and A. I. Klimenko and Z. S. Mustafin and N. A. Kolchanov and Yu. G. Matushkin}, title = {HEC 2.0: improved simulation of the evolution of prokaryotic communities}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {585--596}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/} }
TY - JOUR AU - S. A. Lashin AU - A. I. Klimenko AU - Z. S. Mustafin AU - N. A. Kolchanov AU - Yu. G. Matushkin TI - HEC 2.0: improved simulation of the evolution of prokaryotic communities JO - Matematičeskaâ biologiâ i bioinformatika PY - 2014 SP - 585 EP - 596 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/ LA - en ID - MBB_2014_9_2_a20 ER -
%0 Journal Article %A S. A. Lashin %A A. I. Klimenko %A Z. S. Mustafin %A N. A. Kolchanov %A Yu. G. Matushkin %T HEC 2.0: improved simulation of the evolution of prokaryotic communities %J Matematičeskaâ biologiâ i bioinformatika %D 2014 %P 585-596 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/ %G en %F MBB_2014_9_2_a20
S. A. Lashin; A. I. Klimenko; Z. S. Mustafin; N. A. Kolchanov; Yu. G. Matushkin. HEC 2.0: improved simulation of the evolution of prokaryotic communities. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 585-596. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/
[1] Webb J. S., Givskov M., Kjelleberg S., “Bacterial biofilms: prokaryotic adventures in multicellularity”, Current opinion in microbiology, 6:6 (2003), 578–585 | DOI
[2] Stoodley P., Sauer K., Davies D. G., Costerton J. W., “Biofilms as complex differentiated communities”, Annual Reviews in Microbiology, 56:1 (2002), 187–209 | DOI
[3] Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S., Huse G. et al., “A standard protocol for describing individual-based and agent-based models”, Ecological modelling, 198:1 (2006), 115–126 | DOI
[4] Macy M., Willer R., “From factors to actors: Computational sociology and agent-based modeling”, Annual review of sociology, 28 (2002), 143–166 (accessed 18.11.2014) http://www.jstor.org/stable/10.2307/3069238 | DOI
[5] DeAngelis D. L., Mooij W. M., “Individual-based modeling of ecological and evolutionary processes”, Annual Review of Ecology, Evolution, and Systematics, 2005, 147–168 | DOI
[6] Hoare D., Couzin I., Godin J.-G., Krause J., “Context-dependent group size choice in fish”, Animal Behaviour, 67:1 (2004), 155–164 | DOI
[7] Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W. M., Railsback S. F., Thulke H.-H., Weiner J., Wiegand T., DeAngelis D. L., “Pattern-oriented modeling of agent-based complex systems: lessons from ecology”, Science, 310:5750 (2005), 987–991 | DOI
[8] Olfati-Saber R., “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory”, IEEE Transactions on Automatic Control, 51:3 (2006), 401–420 | DOI
[9] Kreft J. U., Booth G., Wimpenny J. W. T., “BacSim, a simulator for individual-based modelling of bacterial colony growth”, Microbiology, 144:12 (1998), 3275–3287 | DOI
[10] Murphy J. T., Walshe R., “Modelling Antibiotic Resistance in Bacterial Colonies Using Agent-Based Approach”, Understanding the Dynamics of Biological Systems, eds. Dubitzky W., Southgate J., Fuß H., Springer Science Business Media, New York, 2011, 131–154 | DOI
[11] Knibbe C., Mazet O., Chaudier F., Fayard J-M., Beslon G., “Evolutionary coupling between the deleteriousness of gene mutations and the amount of non-coding sequences”, Journal of Theoretical Biology, 244:4 (2007), 621–630 | DOI
[12] Beslon G., Parsons D. P., Sanchez-Dehesa Y., Peña J.-M., Knibbe C., Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness?, Biosystems, 102:1 (2010), 32–40 | DOI
[13] Emonet T., Macal C. M., North M. J., Wickersham C. E., Cluzel P., “AgentCell: a digital single-cell assay for bacterial chemotaxis”, Bioinformatics, 21:11 (2005), 2714–2721 | DOI
[14] Lashin S. A., Suslov V. V., Kolchanov N. A., Matushkin Y. G., “Simulation of coevolution in community by using the “Evolutionary Constructor” program”, Silico Biology, 7:3 (2007), 261–275
[15] Lashin S. A., Matushkin Y. G., Suslov V. V., Kolchanov N. A., “Evolutionary trends in the prokaryotic community and prokaryotic community-phage systems”, Russian Journal of Genetics, 47:12 (2011), 1487–1495 | DOI
[16] Lashin S. A., Matushkin Y. G., “Haploid evolutionary constructor: new features and further challenges”, Silico Biology, 11:3 (2012), 125–135
[17] Boost C++ Library, (accessed 18.11.2014) http://www.boost.org/
[18] The OpenMP$^{\circledR}$ API specification for parallel programming, (accessed 18.11.2014) http://openmp.org/wp/
[19] Lashin S. A., Suslov V. V., Matushkin Y. G., “Comparative Modeling of Coevolution in Communities of Unicellular Organisms: Adaptability and Biodiversity”, Journal of Bioinformatics and Computational Biology, 8:3 (2010), 627–643 | DOI
[20] Sundararaj S., Guo A., Habibi-Nazhad B., Rouani M., Stothard P., Ellison M., Wishart D. S., “The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli”, Nucleic acids research, 32, suppl 1 (2004), D293–D295 | DOI
[21] Intel Parallel Amplifier, (accessed 18.11.2014) http://software.intel.com/intel-parallel-studio-xe
[22] Novosibirsk cluster supercomputer NCS 30-T, (accessed 18.11.2014) http://www2.sscc.ru/HKC-30T/HKC-30T.htm
[23] Lotka A. J., “Contribution to the Theory of Periodic Reactions”, Journal of Physical Chemistry, 14:3 (1910), 271–274 | DOI