HEC 2.0: improved simulation of the evolution of prokaryotic communities
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 585-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modeling and simulation of prokaryotes and prokaryotic communities are important for the development of modern fundamental, medical and biotechnological researches. Previously, we had developed a software package “Haploid evolutionary constructor”, which models simultaneously describe several layers of biological organization: genetic, metabolic, population, ecological. Here we present a new version of the program, which includes the following major improvements: graphic user interface, parallel version of the computational core, and support of user-defined plugins. Plugins describe either changes of prokaryotic population size or cellular metabolism (gene networks). The graphic user interface components for the “Haploid evolutionary constructor” provide convenient visualization of data, model construction, setting up and control. High-performance versions of our software have been implemented using OpenMP and MPI technologies, and can be run at both desktops and MPI clusters. The software is available at the website http://evol-constructor.bionet.nsc.ru/ along with documentation and example models. The “Haploid evolutionary constructor” provides researchers the convenient tool for simulation of bacterial communities’ evolution. The models of prokaryotic communities constructed with this software may be used for studying the fundamental principles of evolution, connecting various levels of biological organization, from genetic to ecological ones. It may also be used as an educational tool for the illustration of fundamental biological laws.
@article{MBB_2014_9_2_a20,
     author = {S. A. Lashin and A. I. Klimenko and Z. S. Mustafin and N. A. Kolchanov and Yu. G. Matushkin},
     title = {HEC 2.0: improved simulation of the evolution of prokaryotic communities},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {585--596},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/}
}
TY  - JOUR
AU  - S. A. Lashin
AU  - A. I. Klimenko
AU  - Z. S. Mustafin
AU  - N. A. Kolchanov
AU  - Yu. G. Matushkin
TI  - HEC 2.0: improved simulation of the evolution of prokaryotic communities
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 585
EP  - 596
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/
LA  - en
ID  - MBB_2014_9_2_a20
ER  - 
%0 Journal Article
%A S. A. Lashin
%A A. I. Klimenko
%A Z. S. Mustafin
%A N. A. Kolchanov
%A Yu. G. Matushkin
%T HEC 2.0: improved simulation of the evolution of prokaryotic communities
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 585-596
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/
%G en
%F MBB_2014_9_2_a20
S. A. Lashin; A. I. Klimenko; Z. S. Mustafin; N. A. Kolchanov; Yu. G. Matushkin. HEC 2.0: improved simulation of the evolution of prokaryotic communities. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 585-596. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a20/

[1] Webb J. S., Givskov M., Kjelleberg S., “Bacterial biofilms: prokaryotic adventures in multicellularity”, Current opinion in microbiology, 6:6 (2003), 578–585 | DOI

[2] Stoodley P., Sauer K., Davies D. G., Costerton J. W., “Biofilms as complex differentiated communities”, Annual Reviews in Microbiology, 56:1 (2002), 187–209 | DOI

[3] Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S., Huse G. et al., “A standard protocol for describing individual-based and agent-based models”, Ecological modelling, 198:1 (2006), 115–126 | DOI

[4] Macy M., Willer R., “From factors to actors: Computational sociology and agent-based modeling”, Annual review of sociology, 28 (2002), 143–166 (accessed 18.11.2014) http://www.jstor.org/stable/10.2307/3069238 | DOI

[5] DeAngelis D. L., Mooij W. M., “Individual-based modeling of ecological and evolutionary processes”, Annual Review of Ecology, Evolution, and Systematics, 2005, 147–168 | DOI

[6] Hoare D., Couzin I., Godin J.-G., Krause J., “Context-dependent group size choice in fish”, Animal Behaviour, 67:1 (2004), 155–164 | DOI

[7] Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W. M., Railsback S. F., Thulke H.-H., Weiner J., Wiegand T., DeAngelis D. L., “Pattern-oriented modeling of agent-based complex systems: lessons from ecology”, Science, 310:5750 (2005), 987–991 | DOI

[8] Olfati-Saber R., “Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory”, IEEE Transactions on Automatic Control, 51:3 (2006), 401–420 | DOI

[9] Kreft J. U., Booth G., Wimpenny J. W. T., “BacSim, a simulator for individual-based modelling of bacterial colony growth”, Microbiology, 144:12 (1998), 3275–3287 | DOI

[10] Murphy J. T., Walshe R., “Modelling Antibiotic Resistance in Bacterial Colonies Using Agent-Based Approach”, Understanding the Dynamics of Biological Systems, eds. Dubitzky W., Southgate J., Fuß H., Springer Science Business Media, New York, 2011, 131–154 | DOI

[11] Knibbe C., Mazet O., Chaudier F., Fayard J-M., Beslon G., “Evolutionary coupling between the deleteriousness of gene mutations and the amount of non-coding sequences”, Journal of Theoretical Biology, 244:4 (2007), 621–630 | DOI

[12] Beslon G., Parsons D. P., Sanchez-Dehesa Y., Peña J.-M., Knibbe C., Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness?, Biosystems, 102:1 (2010), 32–40 | DOI

[13] Emonet T., Macal C. M., North M. J., Wickersham C. E., Cluzel P., “AgentCell: a digital single-cell assay for bacterial chemotaxis”, Bioinformatics, 21:11 (2005), 2714–2721 | DOI

[14] Lashin S. A., Suslov V. V., Kolchanov N. A., Matushkin Y. G., “Simulation of coevolution in community by using the “Evolutionary Constructor” program”, Silico Biology, 7:3 (2007), 261–275

[15] Lashin S. A., Matushkin Y. G., Suslov V. V., Kolchanov N. A., “Evolutionary trends in the prokaryotic community and prokaryotic community-phage systems”, Russian Journal of Genetics, 47:12 (2011), 1487–1495 | DOI

[16] Lashin S. A., Matushkin Y. G., “Haploid evolutionary constructor: new features and further challenges”, Silico Biology, 11:3 (2012), 125–135

[17] Boost C++ Library, (accessed 18.11.2014) http://www.boost.org/

[18] The OpenMP$^{\circledR}$ API specification for parallel programming, (accessed 18.11.2014) http://openmp.org/wp/

[19] Lashin S. A., Suslov V. V., Matushkin Y. G., “Comparative Modeling of Coevolution in Communities of Unicellular Organisms: Adaptability and Biodiversity”, Journal of Bioinformatics and Computational Biology, 8:3 (2010), 627–643 | DOI

[20] Sundararaj S., Guo A., Habibi-Nazhad B., Rouani M., Stothard P., Ellison M., Wishart D. S., “The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli”, Nucleic acids research, 32, suppl 1 (2004), D293–D295 | DOI

[21] Intel Parallel Amplifier, (accessed 18.11.2014) http://software.intel.com/intel-parallel-studio-xe

[22] Novosibirsk cluster supercomputer NCS 30-T, (accessed 18.11.2014) http://www2.sscc.ru/HKC-30T/HKC-30T.htm

[23] Lotka A. J., “Contribution to the Theory of Periodic Reactions”, Journal of Physical Chemistry, 14:3 (1910), 271–274 | DOI