Conformational Analysis of Structural Motifs of $\alpha$-$\alpha$-Corner in the Computational Experiment of Molecular Dynamics
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 575-584.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of recognition of structural motifs of proteins is considered in this work. The motif of the type $\alpha$-$\alpha$-corner is taken as an example which has been analyzed by both an analytical description of the main chain of the protein globule and the spectral method for detecting repetitions. The verification of the found structures is performed by the conformational pattern, which is characterized by the limited $\varphi,\psi$-values on the Ramachandran plot. It is shown by the molecular dynamics method that $\alpha$-$\alpha$-corners are rather stable as autonomous structural units in the aqueous medium.
@article{MBB_2014_9_2_a19,
     author = {V. R. Rudnev and A. N. Pankratov and L. I. Kulikova and F. F. Dedus and D. A. Tikhonov and A. V. Efimov},
     title = {Conformational {Analysis} of {Structural} {Motifs} of $\alpha$-$\alpha${-Corner} in the {Computational} {Experiment} of {Molecular} {Dynamics}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {575--584},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a19/}
}
TY  - JOUR
AU  - V. R. Rudnev
AU  - A. N. Pankratov
AU  - L. I. Kulikova
AU  - F. F. Dedus
AU  - D. A. Tikhonov
AU  - A. V. Efimov
TI  - Conformational Analysis of Structural Motifs of $\alpha$-$\alpha$-Corner in the Computational Experiment of Molecular Dynamics
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 575
EP  - 584
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a19/
LA  - ru
ID  - MBB_2014_9_2_a19
ER  - 
%0 Journal Article
%A V. R. Rudnev
%A A. N. Pankratov
%A L. I. Kulikova
%A F. F. Dedus
%A D. A. Tikhonov
%A A. V. Efimov
%T Conformational Analysis of Structural Motifs of $\alpha$-$\alpha$-Corner in the Computational Experiment of Molecular Dynamics
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 575-584
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a19/
%G ru
%F MBB_2014_9_2_a19
V. R. Rudnev; A. N. Pankratov; L. I. Kulikova; F. F. Dedus; D. A. Tikhonov; A. V. Efimov. Conformational Analysis of Structural Motifs of $\alpha$-$\alpha$-Corner in the Computational Experiment of Molecular Dynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 575-584. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a19/

[1] Efimov A. V., “Standard structures in proteins”, Prog. Biophys. Molec. Biol., 60 (1993), 201–239 | DOI

[2] Brazhnikov E. V., Efimov A. V., “Structure of $\alpha$-$\alpha$-hairpins with short connections in globular proteins”, Molecular Biology, 35:1 (2001), 89–97 | DOI

[3] Efimov A. V., “$\mathrm{L}$-Obraznaya struktura iz dvukh $\alpha$-spiralei s ostatkom prolina mezhdu nimi”, Molekulyarnaya biologiya, 26 (1992), 1370–1376

[4] Efimov A. V., “Novaya supervtorichnaya struktura belkov: $\alpha$-$\alpha$ ugolok”, Molekulyarnaya biologiya, 18 (1984), 1524–1537

[5] Tsai F. C., Sherman J. C., “Circular dichroism analysis of a synthetic peptide corresponding to the $\alpha$-$\alpha$-corner motif of hemoglobin”, Biochemical and biophysical research communications, 196:1 (1993), 435–439 | DOI

[6] Rudnev V. R., Pankratov A. N., Kulikova L. I., Dedus F. F., Tikhonov D. A., Efimov A. V., “Raspoznavanie i analiz ustoichivosti strukturnykh motivov tipa $\alpha$-$\alpha$-ugolok v globulyarnykh belkakh”, Matematicheskaya biologiya i bioinformatika, 8:2 (2013), 398–406 (data obrascheniya: 17.12.2014) http://www.matbio.org/2013/Rudnev_8_398.pdf | DOI

[7] Pankratov A. N., Gorchakov M. A., Dedus F. F., Dolotova N. S., Kulikova L. I., Makhortykh S. A., Nazipova N. N., Novikova D. A., Olshevets M. M., Pyatkov M. I., Rudnev V. R., Tetuev R. K., Filippov V. V., “Spectral Analysis for identification and visualization of repeats in genetic sequences”, Pattern Recognition and Image Analysis, 19:4 (2009), 687–692 | DOI

[8] Case D. A., Cheatham T. E. (3rd), Darden T., Gohlke H., Luo R., Merz K. M. (Jr.), Onufriev A., Simmerling C., Wang B., Woods R. J., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 | DOI

[9] Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79 (1983), 926–935 | DOI

[10] Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, Journal of Computational Chemistry, 24 (2003), 1999–2012 | DOI

[11] Lee M. C., Duan Y., “Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized Born solvent model”, Proteins, 55 (2004), 620–634 | DOI

[12] Dedus F. F., Kulikova L. I., Pankratov A. N., Tetuev R. K., Klassicheskie ortogonalnye bazisy v zadachakh analiticheskogo opisaniya i obrabotki informatsionnykh signalov, Uchebnoe posobie, Izdatelskii otdel VMiK MGU, M., 2004, 147 pp.