Modeling of Spatial Distribution of Knockout Effect for Genes Associated With Aggressiveness of Low Grade Glioma in Human Brain Tissues Using Machine Learning
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 534-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

Currently, new experimental methods are widely used in the field of transcriptomic data analysis aimed at investigating the expression patterns of genes in different tissues under the influence of various environmental and internal factors, including polymorphisms. In particular, existing methods of gene knock-out and knock-down allow modeling of the impact that external factors have on expression of a target gene. Making use of available data on gene expression in diverse parts of an organism, including different brain regions, provides basis for constructing statistical models for mutual interdependencies of gene expression levels. Allen Brain Atlas database, for example, contains unique data on spatial distribution of gene expression levels in human and mice brain tissues. For the first time, the approach of mathematical modeling of spatial distribution of gene knock-out effects in human brain tissues using machine learning methods and data on gene expression taken from the Allen Brain Atlas database was suggested. It is shown that knock-out of central genes of gene network related to the aggressiveness of low grade glioma has stronger influence on expression of other genes in comparison with knock-out of peripheral genes in this network. Moreover, the effect reveals pronounced spatial heterogeneity.
@article{MBB_2014_9_2_a17,
     author = {E. D. Petrovskiy and N. A. Kolchanov and V. A. Ivanisenko},
     title = {Modeling of {Spatial} {Distribution} of {Knockout} {Effect} for {Genes} {Associated} {With} {Aggressiveness} of {Low} {Grade} {Glioma} in {Human} {Brain} {Tissues} {Using} {Machine} {Learning}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {534--542},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a17/}
}
TY  - JOUR
AU  - E. D. Petrovskiy
AU  - N. A. Kolchanov
AU  - V. A. Ivanisenko
TI  - Modeling of Spatial Distribution of Knockout Effect for Genes Associated With Aggressiveness of Low Grade Glioma in Human Brain Tissues Using Machine Learning
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 534
EP  - 542
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a17/
LA  - ru
ID  - MBB_2014_9_2_a17
ER  - 
%0 Journal Article
%A E. D. Petrovskiy
%A N. A. Kolchanov
%A V. A. Ivanisenko
%T Modeling of Spatial Distribution of Knockout Effect for Genes Associated With Aggressiveness of Low Grade Glioma in Human Brain Tissues Using Machine Learning
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 534-542
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a17/
%G ru
%F MBB_2014_9_2_a17
E. D. Petrovskiy; N. A. Kolchanov; V. A. Ivanisenko. Modeling of Spatial Distribution of Knockout Effect for Genes Associated With Aggressiveness of Low Grade Glioma in Human Brain Tissues Using Machine Learning. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 534-542. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a17/

[1] Hawrylycz M. J., Lein E. S., Guillozet-Bongaarts A., Shen E. H., Ng L., Miller J. A., van de Lagemaat L. N., Smith K. A., Ebbert A., Riley Z. L. et al., “An anatomically comprehensive atlas of the adult human brain transcriptome”, Nature, 489:7416 (2012), 391–399 | DOI

[2] Heintz N., “Gene expression nervous system atlas (GENSAT)”, Nature Neuroscience, 7:5 (2004), 483–483 | DOI

[3] Magdaleno S., Jensen P., Brumwell C. L., Seal A., Lehman K., Asbury A., Cheung T., Cornelius T., Batten D. M., Eden C. et al., “BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system”, PLoS Biology, 4:4 (2006), e86 | DOI

[4] Edgar R., Domrachev M., Lash A. E., “Gene Expression Omnibus: NCBI gene expression and hybridization array data repository”, Nucleic Acids Research, 30:1 (2002), 207–210 | DOI

[5] De Jong H., “Modeling and simulation of genetic regulatory systems: a literature review”, Journal of Computational Biology, 9:1 (2002), 67–103 | DOI

[6] Someren E. V., Wessels L. F. A., Backer E., Reinders M. J. T., “Genetic network modeling”, Pharmacogenomics, 3:4 (2002), 507–525 | DOI

[7] Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R., “Gene regulatory network inference: data integration in dynamic models — a review”, Biosystems, 96:1 (2009), 86–103 | DOI

[8] Husmeier D., “Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks”, Bioinformatics, 19:17 (2003), 2271–2282 | DOI

[9] Rogers S., Girolami M. A., “Bayesian regression approach to the inference of regulatory networks from gene expression data”, Bioinformatics, 21:14 (2005), 3131–3137 | DOI

[10] Steggles L. J., Banks R., Shaw O., Wipat A., “Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach”, Bioinformatics, 23:3 (2007), 336–343 | DOI

[11] Duffau H., Capelle L., “Preferential brain locations of low-grade gliomas”, Cancer, 100:12 (2004), 2622–2626 | DOI

[12] Pouratian N., Schiff D., “Management of low-grade glioma”, Current Neurology and Neuroscience Reports, 10:3 (2010), 224–231 | DOI

[13] Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A., Lin J., Minguez P., Bork P., von Mering C., Jensen L. J., “STRING v9.1: protein-protein interaction networks, with increased coverage and integration”, Nucleic Acids Research, 41:D1 (2013), 808–815

[14] Cui X., Li J., XjVie, a viewing program for SPM, (data obrascheniya: 11.09.2014) http://people.hnl.bcm.tmc.edu/cuixu/xjView/

[15] Penny W., Friston K., Ashburner J., Kiebel S., Nichols T., Statistical Parametric Mapping: The Analysis of Functional Brain Images, 2007, 656 pp.

[16] Ivanisenko N. V., Gubanova N. V., Kolchanov N. A., Ivanisenko V. A., “Predskazanie ekspressionnykh markerov agressivnosti gliomy nizkoi stepeni zlokachestvennosti po ekspressionnym dannym TCGA”, Matematicheskaya biologiya i bioinformatika, 9:2 (2014), 527–533 http://www.matbio.org/2014/Ivanisenko_9_527.pdf | DOI