Modeling of Regulatory Mechanisms for mESC Self-Renewal: Kinetic and Stochastic Approaches
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 504-517.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analysis of the kinetic and stochastic models describing the dynamics of the core gene network for maintenance of pluripotency and differentiation of embryonic stem cells is represented. The core gene network was modified according to the latest experimental data on the regulation of Nanog expression. Analysis of the kinetic model showed that in the dynamics of the concentration changes as Nanog mRNA and protein could potentially exist oscillating mode, which may explains the experimentally observed Nanog heterogeneity in stem cell populations. Stochastic approach, in turn, allowed us to reveal a range of parameters, in which there are two possible system states as the result of stochastic fluctuations: the high and low levels of expression of Oct4, Sox2 and Nanog. It is possible to accidentally switch from one state to another that may also be one of the mechanisms of the Nanog heterogeneity.
@article{MBB_2014_9_2_a15,
     author = {I. R. Akberdin and N. V. Ivanisenko and F. V. Kazantsev and E. A. Oschepkova and N. A. Omelyanchuk and Yu. G. Matushkin and D. A. Afonnikov},
     title = {Modeling of {Regulatory} {Mechanisms} for {mESC} {Self-Renewal:} {Kinetic} and {Stochastic} {Approaches}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {504--517},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a15/}
}
TY  - JOUR
AU  - I. R. Akberdin
AU  - N. V. Ivanisenko
AU  - F. V. Kazantsev
AU  - E. A. Oschepkova
AU  - N. A. Omelyanchuk
AU  - Yu. G. Matushkin
AU  - D. A. Afonnikov
TI  - Modeling of Regulatory Mechanisms for mESC Self-Renewal: Kinetic and Stochastic Approaches
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 504
EP  - 517
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a15/
LA  - ru
ID  - MBB_2014_9_2_a15
ER  - 
%0 Journal Article
%A I. R. Akberdin
%A N. V. Ivanisenko
%A F. V. Kazantsev
%A E. A. Oschepkova
%A N. A. Omelyanchuk
%A Yu. G. Matushkin
%A D. A. Afonnikov
%T Modeling of Regulatory Mechanisms for mESC Self-Renewal: Kinetic and Stochastic Approaches
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 504-517
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a15/
%G ru
%F MBB_2014_9_2_a15
I. R. Akberdin; N. V. Ivanisenko; F. V. Kazantsev; E. A. Oschepkova; N. A. Omelyanchuk; Yu. G. Matushkin; D. A. Afonnikov. Modeling of Regulatory Mechanisms for mESC Self-Renewal: Kinetic and Stochastic Approaches. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 504-517. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a15/

[1] Medvedev S. P., Shevchenko A. I., Sukhikh G. T., Zakiyan S. M., Indutsirovannye plyuripotentnye stvolovye kletki, ed. Vlasov V. V., Izd-vo SO RAN, Novosibirsk, 2014, 368 pp.

[2] Jaenisch R., Young R., “Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming”, Cell, 132:4 (2008), 567–582 | DOI

[3] Graf T., Stadtfeld M., “Heterogeneity of embryonic and adult stem cells”, Cell Stem Cell, 3:5 (2008), 480–483 | DOI

[4] MacArthur B. D., Lemischka I. R., “Statistical mechanics of pluripotency”, Cell, 154:3 (2013), 484–489 | DOI

[5] Hayashi K., Lopes S. M., Tang F., Surani M. A., “Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states”, Cell Stem Cell, 3:4 (2008), 391–401 | DOI

[6] Torres-Padilla M. E., Chambers I., “Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage”, Development, 141:11 (2014), 2173–2181 | DOI

[7] Akberdin I. R., Kazantsev F. V., Ermak T. V., Timonov V. S., Khlebodarova T. M., Likhoshvai V. A., “«Elektronnaya kletka»: problemy i perspektivy”, Matematicheskaya biologiya i bioinformatika, 8:1 (2013), 295–315 | DOI

[8] Kalmar T., Lim C., Hayward P., Muñoz-Descalzo S., Nichols J., Garcia-Ojalvo J., Martinez Arias A., “Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells”, PLoS Biol., 7:7 (2009), e1000149 | DOI

[9] Glauche I., Herberg M., Roeder I., “Nanog variability and pluripotency regulation of embryonic stem cells-insights from a mathematical model analysis”, PLoS One, 5:6 (2010), e11238 | DOI

[10] Wu J., Tzanakakis E. S., “Distinct allelic patterns of Nanog expression impart embryonic stem cell population heterogeneity”, PLoS Comp. Biol., 9:7 (2013), e1003140 | DOI

[11] Chickarmane V., Olariu V., Peterson C., “Probing the role of stochasticity in a model of the embryonic stem cell-heterogeneous gene expression and reprogramming efficiency”, BMC Syst. Biol., 6:1 (2012), 98 | DOI

[12] Chickarmane V., Troein C., Nuber U. A., Sauro H. M., Peterson C., “Transcriptional dynamics of the embryonic stem cell switch”, PLoS Comp. Biol., 2:9 (2006), e123 | DOI

[13] Chickarmane V., Peterson C., “A computational model for understanding stem cell, trophectoderm and endoderm lineage determination”, PLoS One, 3:10 (2008), e3478 | DOI

[14] Buchler N. E., Gerland U., Hwa T., “On schemes of combinatorial transcription logic”, PNAS, 100:9 (2003), 5136–5141 | DOI

[15] Ying Q. L., Wray J., Nichols J., Batlle-Morera L., Doble B., Woodgett J., Cohen P., Smith A., “The ground state of embryonic stem cell self-renewal”, Nature, 453:7194 (2008), 519–523 | DOI

[16] Adachi K., Schöler H. R., “Directing reprogramming to pluripotency by transcription factors”, Curr. Opin. Gen. Dev., 22:5 (2012), 416–422 | DOI

[17] Fidalgo M., Faiola F., Pereira C. F., Ding J., Saunders A., Gingold J., Schaniel C., Lemischka I. R., Silva J. C., Wang J., “Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming”, PNAS, 109:40 (2012), 16202–16207 | DOI

[18] Wu J., Tzanakakis E. S., “Contribution of stochastic partitioning at human embryonic stem cell division to NANOG heterogeneity”, PloS One, 7:11 (2012), e50715 | DOI

[19] Navarro P., Festuccia N., Colby D., Gagliardi A., Mullin N. P., Zhang W., Karwacki-Neisius V., Osorno R., Kelly D., Robertson M., Chambers I., “OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells”, The EMBO J., 31:24 (2012), 4547–4562 | DOI

[20] Singh A. M., Hamazaki T., Hankowski K. E., Terada N., “A heterogeneous expression pattern for Nanog in embryonic stem cells”, Stem Cells, 25:10 (2007), 2534–2542 | DOI

[21] Karwacki-Neisius V., Göke J., Osorno R., Halbritter F., Ng J. H., Weiße A. Y., Wong F. C. K., Gagliardi A., Mullin N. P., Festuccia N., Colby D., Tomlinson S. R., Ng H. H., Chambers I., “Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog”, Cell Stem Cell, 12:5 (2013), 531–545 | DOI

[22] Thomson M., Liu S. J., Zou L. N., Smith Z., Meissner A., Ramanathan S., “Pluripotency factors in embryonic stem cells regulate differentiation into germ layers”, Cell, 145:6 (2011), 875–889 | DOI

[23] Abranches E., Bekman E., Henrique D., “Generation and characterization of a novel mouse embryonic stem cell line with a dynamic reporter of Nanog expression”, PloS One, 8:3 (2013), e59928 | DOI

[24] Saxe J. P., Tomilin A., Schöler H. R., Plath K., Huang J., “Post-translational regulation of Oct4 transcriptional activity”, PloS One, 4:2 (2009), e4467 | DOI

[25] Likhoshvai V., Ratushny A., “Generalized hill function method for modeling molecular processes”, J. Bioinform. Comput. Biol., 5:02b (2007), 521–531 | DOI

[26] Gillespie D. T., “Stochastic simulation of chemical kinetics”, Annu. Rev. Phys. Chem., 58 (2007), 35–55 | DOI

[27] Gillespie D. T., “Simulation methods in systems biology”, Formal Methods for Computational Systems Biology, eds. Bernardo M., Degano P., Zavattaro G., Springer, Berlin–Heidelberg, 2008, 125–167 | DOI

[28] Rohr C., Marwan W., Heiner M., “Snoopy — a unifying Petri net framework to investigate biomolecular networks”, Bioinformatics, 26:7 (2010), 974–975 | DOI

[29] Gillespie D. T., “Exact stochastic simulation of coupled chemical reactions”, J. Phys. Chem., 81:25 (1977), 2340–2361 | DOI

[30] Papapetrou E. P., Tomishima M. J., Chambers S. M., Mica Y., Reed E., Menon J., Tabar V., Mo Q., Studer L., Sadelain M., “Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation”, PNAS, 106:31 (2009), 12759–12764 | DOI

[31] Suzuki A., Raya Á., Kawakami Y., Morita M., Matsui T., Nakashima K., Gage F. H., Rodríguez-Esteban C., Belmonte J. C. I., “Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells”, PNAS, 103:27 (2006), 10294–10299 | DOI