Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2014_9_2_a14, author = {A. V. Penenko and T. S. Troeglazova and U. S. Zubairova and D. Zh. Bayshibaev and S. N. Nikolaev}, title = {Usage of {Parallel} {Algorithms} {Based} on {CUDA} {Technology} for {Realisation} of {Reaction-Diffusion} {Models} of {Two-Dimensional} {Cellular} {Ensemble}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {491--503}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/} }
TY - JOUR AU - A. V. Penenko AU - T. S. Troeglazova AU - U. S. Zubairova AU - D. Zh. Bayshibaev AU - S. N. Nikolaev TI - Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble JO - Matematičeskaâ biologiâ i bioinformatika PY - 2014 SP - 491 EP - 503 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/ LA - ru ID - MBB_2014_9_2_a14 ER -
%0 Journal Article %A A. V. Penenko %A T. S. Troeglazova %A U. S. Zubairova %A D. Zh. Bayshibaev %A S. N. Nikolaev %T Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble %J Matematičeskaâ biologiâ i bioinformatika %D 2014 %P 491-503 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/ %G ru %F MBB_2014_9_2_a14
A. V. Penenko; T. S. Troeglazova; U. S. Zubairova; D. Zh. Bayshibaev; S. N. Nikolaev. Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 491-503. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/
[1] Thompson A. W., On Growth and Form: The Complete Revised Edition, Dover, New York, 1992
[2] Bourgine P., Lesne A. (eds.), Morphogenesis: Origins of Patterns and Shapes, Springer, 2011
[3] Lutolf M. P., Hubbell J. A., “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering”, Nature Biotechnology, 23 (2005), 47–55 | DOI
[4] Sangan R. S., Sangwan-Norrel B. S., Harada H., “In vitro techniques and plant morphogenesis: fundamental aspects and practical applications”, Plant Biotechnology, 14:2 (1997), 93–100 | DOI
[5] Reddi A. H., “Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials”, Tissue Engineering, 6:4 (2000), 351–359 | DOI
[6] Reddi A. H., “Role of morphogenetic proteins in skeletal tissue engineering and regeneration”, Nature Biotechnology, 16 (1998), 247–252 | DOI
[7] Turing A. M., “The chemical basis of morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B, 237:641 (1952), 37–72 | DOI
[8] Schwank G., Basler K., “Regulation of organ growth by morphogen gradients”, Cold Spring Harbor Perspectives in Biology, 2:1 (2010), a001669 | DOI
[9] Meinhardt H., “Models for the generation and interpretation of gradients”, Cold Spring Harbor Perspectives in Biology, 1:4 (2009), a001362 | DOI
[10] Voss-Bohme A., “Multi-Scale modeling in morphogenesis: A critical analysis of the cellular potts model”, PLoS ONE, 7:9 (2012), e42852 | DOI
[11] Coskuna H., Lib Y.,Mackeyd M. A., “Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data”, Journal of Theoretical Biology, 244:2 (2007), 169–179 | DOI
[12] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Uchebnik dlya studentov vysshikh uchebnykh zavedenii, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009, 458 pp.
[13] Zubairova U. S., Golushko S. K., Penenko A. V., Nikolaev S. V., “$\mathrm{L}$-Sistema dlya modelirovaniya ploskikh odnomerno rastuschikh rastitelnykh tkanei”, Vavilovskii zhurnal genetiki i selektsii, 18:4/2 (2014), 945–952
[14] Wolpert L., “Positional information and the spatial pattern of cellular differentiation”, J. Theor. Biol., 25:1 (1969), 1–47 | DOI
[15] Sanders Dzh., Kendrot E., Tekhnologiya CUDA v primerakh: vvedenie v programmirovanie graficheskikh protsessorov, DMK Press, M., 2011, 232 pp.
[16] Boreskov A., Kharlamov A., Markovskii N., Mikushin D., Mortikov E., Myltsev A., Sakharnykh N., Frolov V., Parallelnye vychisleniya na GPU. Arkhitektura i programmnaya model CUDA, Uchebnoe posobie, Izdatelstvo Moskovskogo universiteta, 2012, 336 pp.
[17] Swat M., Thomas G. L., Belmonte J. M., Shirinifard A., Hmeljak D., Glazier J. A., “Multi-Scale Modeling of Tissues Using CompuCell3D”, Computational Methods in Cell Biology, 110 (2012), 325–366 | DOI
[18] Nikolaev S. V., Zubairova U. S., Fadeev S. I., Miolsness E., Kolchanov N. A., “Issledovanie odnomernoi modeli regulyatsii razmerov vozobnovitelnoi zony v biologicheskoi tkani s uchetom deleniya kletok”, Sibirskii zhurnal industrialnoi matematiki, 13:4(44) (2010), 70–82
[19] Nikolaev S. V., Zubairova U. S., Penenko A. V., Melsness E. D., Shapiro B. E., Kolchanov N. A., “Model regulyatsii struktury nishi stvolovykh kletok v apikalnoi meristeme pobega Arabidopsis thaliana”, DAN, 452:3 (2013), 336–338
[20] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003
[21] Sanderson A. R., Meyer M. D., Kirby R. M., Johnson C. R., “A framework for exploring numerical solutions of advection-reaction-diffusion equations using a GPU-based approach”, Computing and Visualization in Science, 12:4 (2009), 155–170 | DOI
[22] Hochbruck M., Ostermann A., “Exponential integrators”, Acta Numerica, 19 (2010), 209–286 | DOI
[23] Einkemmer L., Ostermann A., Exponential Integrators on Graphic Processing Units, 2013, arXiv: 1309.4616
[24] Penenko V. V., Tsvetova E. A., Penenko A. V., “Variational approach and Euler's integrating factors for environmental studies”, CAMWA, 67:12 (2014), 2240–2256
[25] Hesstvedt E., Hov O., Isaacsen I., “Quasi-steady-state-approximation in air pollution modelling: comparison of two numerical schemes for oxidant prediction”, Int. J. Chem. Kinet., 10 (1978), 971–994 | DOI