Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 491-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the morphogen theory the growth and differentiation of cellular tissue can be described by mathematical models of reaction-diffusion containing a system of differential equations with partial derivatives. Taking into account the cellular structure of the tissue, such models are reduced to a system of ordinary differential equations. When modeling a real size tissue containing $10^4$$10^6$ cells, the dimension of the system of equations makes actual use of high-performance computing to solve the problem in an acceptable time. In this work, we consider the direct problem solving algorithm based on splitting tasks by biophysical processes and explicit computational schemes for the implementation of individual processes. The paper demonstrates the effectiveness of this scheme for calculations on graphics accelerators in the framework of high performance computing CUDA.
@article{MBB_2014_9_2_a14,
     author = {A. V. Penenko and T. S. Troeglazova and U. S. Zubairova and D. Zh. Bayshibaev and S. N. Nikolaev},
     title = {Usage of {Parallel} {Algorithms} {Based} on {CUDA} {Technology} for {Realisation} of {Reaction-Diffusion} {Models} of {Two-Dimensional} {Cellular} {Ensemble}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {491--503},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/}
}
TY  - JOUR
AU  - A. V. Penenko
AU  - T. S. Troeglazova
AU  - U. S. Zubairova
AU  - D. Zh. Bayshibaev
AU  - S. N. Nikolaev
TI  - Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 491
EP  - 503
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/
LA  - ru
ID  - MBB_2014_9_2_a14
ER  - 
%0 Journal Article
%A A. V. Penenko
%A T. S. Troeglazova
%A U. S. Zubairova
%A D. Zh. Bayshibaev
%A S. N. Nikolaev
%T Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 491-503
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/
%G ru
%F MBB_2014_9_2_a14
A. V. Penenko; T. S. Troeglazova; U. S. Zubairova; D. Zh. Bayshibaev; S. N. Nikolaev. Usage of Parallel Algorithms Based on CUDA Technology for Realisation of Reaction-Diffusion Models of Two-Dimensional Cellular Ensemble. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 491-503. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a14/

[1] Thompson A. W., On Growth and Form: The Complete Revised Edition, Dover, New York, 1992

[2] Bourgine P., Lesne A. (eds.), Morphogenesis: Origins of Patterns and Shapes, Springer, 2011

[3] Lutolf M. P., Hubbell J. A., “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering”, Nature Biotechnology, 23 (2005), 47–55 | DOI

[4] Sangan R. S., Sangwan-Norrel B. S., Harada H., “In vitro techniques and plant morphogenesis: fundamental aspects and practical applications”, Plant Biotechnology, 14:2 (1997), 93–100 | DOI

[5] Reddi A. H., “Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials”, Tissue Engineering, 6:4 (2000), 351–359 | DOI

[6] Reddi A. H., “Role of morphogenetic proteins in skeletal tissue engineering and regeneration”, Nature Biotechnology, 16 (1998), 247–252 | DOI

[7] Turing A. M., “The chemical basis of morphogenesis”, Philosophical Transactions of the Royal Society of London. Series B, 237:641 (1952), 37–72 | DOI

[8] Schwank G., Basler K., “Regulation of organ growth by morphogen gradients”, Cold Spring Harbor Perspectives in Biology, 2:1 (2010), a001669 | DOI

[9] Meinhardt H., “Models for the generation and interpretation of gradients”, Cold Spring Harbor Perspectives in Biology, 1:4 (2009), a001362 | DOI

[10] Voss-Bohme A., “Multi-Scale modeling in morphogenesis: A critical analysis of the cellular potts model”, PLoS ONE, 7:9 (2012), e42852 | DOI

[11] Coskuna H., Lib Y.,Mackeyd M. A., “Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data”, Journal of Theoretical Biology, 244:2 (2007), 169–179 | DOI

[12] Kabanikhin S. I., Obratnye i nekorrektnye zadachi, Uchebnik dlya studentov vysshikh uchebnykh zavedenii, Sibirskoe nauchnoe izdatelstvo, Novosibirsk, 2009, 458 pp.

[13] Zubairova U. S., Golushko S. K., Penenko A. V., Nikolaev S. V., “$\mathrm{L}$-Sistema dlya modelirovaniya ploskikh odnomerno rastuschikh rastitelnykh tkanei”, Vavilovskii zhurnal genetiki i selektsii, 18:4/2 (2014), 945–952

[14] Wolpert L., “Positional information and the spatial pattern of cellular differentiation”, J. Theor. Biol., 25:1 (1969), 1–47 | DOI

[15] Sanders Dzh., Kendrot E., Tekhnologiya CUDA v primerakh: vvedenie v programmirovanie graficheskikh protsessorov, DMK Press, M., 2011, 232 pp.

[16] Boreskov A., Kharlamov A., Markovskii N., Mikushin D., Mortikov E., Myltsev A., Sakharnykh N., Frolov V., Parallelnye vychisleniya na GPU. Arkhitektura i programmnaya model CUDA, Uchebnoe posobie, Izdatelstvo Moskovskogo universiteta, 2012, 336 pp.

[17] Swat M., Thomas G. L., Belmonte J. M., Shirinifard A., Hmeljak D., Glazier J. A., “Multi-Scale Modeling of Tissues Using CompuCell3D”, Computational Methods in Cell Biology, 110 (2012), 325–366 | DOI

[18] Nikolaev S. V., Zubairova U. S., Fadeev S. I., Miolsness E., Kolchanov N. A., “Issledovanie odnomernoi modeli regulyatsii razmerov vozobnovitelnoi zony v biologicheskoi tkani s uchetom deleniya kletok”, Sibirskii zhurnal industrialnoi matematiki, 13:4(44) (2010), 70–82

[19] Nikolaev S. V., Zubairova U. S., Penenko A. V., Melsness E. D., Shapiro B. E., Kolchanov N. A., “Model regulyatsii struktury nishi stvolovykh kletok v apikalnoi meristeme pobega Arabidopsis thaliana”, DAN, 452:3 (2013), 336–338

[20] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[21] Sanderson A. R., Meyer M. D., Kirby R. M., Johnson C. R., “A framework for exploring numerical solutions of advection-reaction-diffusion equations using a GPU-based approach”, Computing and Visualization in Science, 12:4 (2009), 155–170 | DOI

[22] Hochbruck M., Ostermann A., “Exponential integrators”, Acta Numerica, 19 (2010), 209–286 | DOI

[23] Einkemmer L., Ostermann A., Exponential Integrators on Graphic Processing Units, 2013, arXiv: 1309.4616

[24] Penenko V. V., Tsvetova E. A., Penenko A. V., “Variational approach and Euler's integrating factors for environmental studies”, CAMWA, 67:12 (2014), 2240–2256

[25] Hesstvedt E., Hov O., Isaacsen I., “Quasi-steady-state-approximation in air pollution modelling: comparison of two numerical schemes for oxidant prediction”, Int. J. Chem. Kinet., 10 (1978), 971–994 | DOI