Computer Simulation of Self-Organization in the Bacterial MinCDE System
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 453-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

The MinCDE protein system is present in Escherichia coli and some other bacteria. In vivo, the MinCDE prevents incorrect cell division. In vitro, the MinCDE forms protein waves and some time-spatial patterns. So far, exact mechanism of such self-organization are not clear. However, recently it has been suggested that self-organization in the MinCDE system arises from an interplay of two opposing mechanisms: cooperative binding of MinD proteins to the membrane, and accelerated MinD detachment due to persistent MinE rebinding. Based on this hypothesis we developed cellular automaton model of the MinDE self-organization. The graph of protein concentration, obtained as a result computer simulations, revealed similarity with the graphs from the experiments in vitro. In addition, the visualization of computational experiments showed propagating protein waves similar to those that emerge in vitro.
@article{MBB_2014_9_2_a13,
     author = {A. A. Vitvitsky},
     title = {Computer {Simulation} of {Self-Organization} in the {Bacterial} {MinCDE} {System}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {453--363},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a13/}
}
TY  - JOUR
AU  - A. A. Vitvitsky
TI  - Computer Simulation of Self-Organization in the Bacterial MinCDE System
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 453
EP  - 363
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a13/
LA  - ru
ID  - MBB_2014_9_2_a13
ER  - 
%0 Journal Article
%A A. A. Vitvitsky
%T Computer Simulation of Self-Organization in the Bacterial MinCDE System
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 453-363
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a13/
%G ru
%F MBB_2014_9_2_a13
A. A. Vitvitsky. Computer Simulation of Self-Organization in the Bacterial MinCDE System. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 453-363. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a13/

[1] Hoekstra A. G., Kroc J., Sloot P. M. A., Simulating Complex Systems by Cellular Automata. Understanding complex Systems, Springer, Berlin, 2010

[2] Bandman O. L., “Implementation of Large-Scale Cellular Automata Models on Multi-Core Computers and Clusters”, High Performance Computing and Simulation (HPCS), 2013 Int. Conf. IEEE Conference Publications, 2013, 304–310

[3] Lutkenhaus J., “Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring”, Annu. Rev. Biochem., 76 (2007), 539–562 | DOI

[4] Loose M., Fischer-Friedrich E., Herold C., Kruse K., Schwille P., “Min protein patterns emerge from rapid rebinding and membrane interaction of MinE”, Nat. Struct. Mol. Biol., 18 (2011), 577–583 | DOI

[5] Ivanov V., Mizuuchi K., “Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins”, Proc. Natl. Acad. Sci. USA, 107 (2010), 8071–8078 | DOI

[6] Lackner L., Raskin D., Boer P., “ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro”, J. Bacteriol., 185 (2003), 735–749 | DOI

[7] Loose M., “Spatial Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro”, Science, 320 (2008), 789–792 | DOI

[8] Fange D., Elf J., “Noise-induced Min phenotypes in E. coli”, PLoS Comput. Biol., 2:6 (2006), 637–648 | DOI

[9] Lutkenhaus J., Sundaramoorthy M., “MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation”, Mol. Microbiol., 48 (2003), 295–303 | DOI

[10] Leonard T., Butler P. J., Lowe J., “Bacterial chromosome segregation: Structure and DNA binding of the Soj dimer — a conserved biological switch”, EMBO, 24 (2005), 270–282 | DOI

[11] Raskin D., de Boer P., “Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli”, Proc. Natl. Acad. Sci. USA, 96 (1999), 4971–4976 | DOI

[12] Hu Z., Lutkenhaus J., “Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE”, Mol. Microbiol., 34 (1999), 82–90 | DOI

[13] Fu X., Shih Y. L., Zhang Y., Rotheld L. I., “The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle”, Proc. Natl. Acad. Sci. USA, 98 (2001), 980–985 | DOI

[14] Hale C. A., Meinhardt H., de Boer P., “Dynamic localization cycle of the cell division regulator MinE in Escherichia coli”, EMBO, 20 (2001), 1563–1572 | DOI

[15] Von-Neumann J., Theory of self-reproducing automata, University of Illinois, USA, 1966, 403 pp.

[16] Achasova S., Bandman O., Markova V., Piskunov S., Parallel substitution algorithm. Theory and application, World Scientific, Singapore, 1994, 180 pp.

[17] Bandman O., “Cellular Automata Composition Techniques for Spatial Dynamics Simulation”, Simulating Complex Systems by Cellular Automata. Understanding complex Systems, eds. Hoekstra A. et al., Springer, Berlin, 2010, 81–115 | DOI

[18] Toffolli T., Margolus N., Cellular Automata Machines: A New Environment for Modeling, MIT Press, USA, 1987, 260 pp.

[19] Bandman O., “Cellular Automata Diffusion Models for Multicomputer Implementation”, Bull. Nov. Comp. Center, Comp. Science, 36 (2014), 21–31