Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2014_9_2_a12, author = {Yu. S. Bukin and A. L. Gorbylev}, title = {An {Individual-Based} {Model} to {Simulate} {Genetic} {Processes} in {Populations} of {Species} {Inhabiting} {One-Dimensional} {Area}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {438--452}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/} }
TY - JOUR AU - Yu. S. Bukin AU - A. L. Gorbylev TI - An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area JO - Matematičeskaâ biologiâ i bioinformatika PY - 2014 SP - 438 EP - 452 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/ LA - ru ID - MBB_2014_9_2_a12 ER -
%0 Journal Article %A Yu. S. Bukin %A A. L. Gorbylev %T An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area %J Matematičeskaâ biologiâ i bioinformatika %D 2014 %P 438-452 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/ %G ru %F MBB_2014_9_2_a12
Yu. S. Bukin; A. L. Gorbylev. An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 438-452. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/
[1] Altukhov Yu. P., Geneticheskie protsessy v populyatsiyakh, IKTs Akademkniga, M., 2003, 432 pp.
[2] Etheridge A., Some Mathematical Models from Population Genetics, Springer, 2011, 119 pp.
[3] Wright S., “Evolution in Mendelian populations”, Genetics, 16 (1931), 97–159
[4] Wright S., “The genetical structure of population”, Ann. Eugenics, 15 (1951), 323–354 | DOI
[5] Kimura M., ““Stepping stone” model of population”, Ann. Rep. Nat. Ist. Genet. Mishima, 3 (1953), 63–65
[6] Kimura M., Weiss G. H., “The stepping stone model of population structure and decrease of genetic correlation with distance”, Genetics, 49 (1964), 561–567
[7] Wright S., “Isolation by distance”, Genetics, 28 (1943), 114–138
[8] Maruyama T., “Effective number of alleles in a subdivided population”, Theor. Popul. Biol., 1 (1970), 273–306 | DOI
[9] Slatkin M., “Inbreeding coefficients and coalescence times”, Genet. Res., 58 (1991), 167–175 | DOI
[10] Strobeck C., “Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision”, Genetics, 117 (1987), 149–153
[11] Guillot G., “On the inference of spatial structure from population genetics data”, Bioinformatics, 25, 1796–180 | DOI
[12] Wilkins J. F., Wakeley J., “The Coalescent in a continuous, finite, linear population”, Genetics, 161 (2002), 873–888
[13] Hudson R. R., Slatkin M., Maddison W. P., “Estimation of levels of gene flow from DNA sequence data”, Genetics, 132 (1992), 583–589
[14] Bocquet-Appel J. P., Bacro J. N., “Isolation by distance, trend surface analysis, and spatial autocorrelation”, Human Biology, 65 (1993), 11–27
[15] Slatkin M., Maddison W. P., “Detecting isolation by distance using phylogenies of genes”, Genetics, 126 (1990), 249–260
[16] Jensen J. L., Bohonak A. J., Kelley S. T., “Isolation by distance, web service”, BMC Genetics, 6 (2005), 13 | DOI
[17] Carvajal-Rodríguez A., “GENOMEPOP: A program to simulate genomes in populations”, BMC Bioinformatics, 9 (2008)
[18] Laval G., Excoffier L., “SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history”, Bioinformatics, 20 (2004), 2485–2487 | DOI
[19] Anderson C. N. K., Ramakrishnan U., Chan Y. L., Hadly E. A., “Serial SimCoal: A population genetics model for data from multiple populations and points in time”, Bioinformatics, 21 (2005), 1733–1734 | DOI
[20] Landguth E. L., Cushman S. A., “CDPOP: A spatially-explicit cost distance population genetics program”, Molecular Ecology Resources, 10 (2010), 156–161 | DOI
[21] Strand A. E., Niehaus J. M., “KERNELPOP, a spatially explicit population genetic simulation engine”, Mol. Ecol. Notes, 7 (2007), 969–973 | DOI
[22] Strand A. E., “Metasim 1.0: an individual-based environment for simulating population genetics of complex population dynamics”, Mol. Ecol. Notes, 2 (2002), 373–376 | DOI
[23] Balloux F., “EASYPOP (version 1.7): a computer program for population genetics simulations”, J. Hered., 92 (2001), 301–302 | DOI
[24] Gomanenko G. V., Kamaltynov R. M., Kuzmenkova Zh. V., Berenos K., Scherbakov D. Yu., “Populyatsionnaya struktura baikalskogo bokoplava Gmelinoides fasciatus (Stebbing)”, Genetika, 41:8 (2005), 1108–1114
[25] Peretolchina T. E., Bukin T. Ya., Sitnikova T. Ya., Scherbakov D. Yu., “Geneticheskaya differentsiatsiya endemichnogo baikalskogo vida Baicalia sarinata (Mollusca: Caenogastropoda)”, Genetika, 43:12 (2007), 1–9
[26] Mashiko K., Kamaltynov R. M., Sherbakov D. Yu., Morino H., “Genetic separation of gammarid (Eulimnogammarus cyaneus) populations by localized topographic changes in ancient Lake Baikal”, Archive Hydrobiology, 139:3 (1997), 379–387
[27] Mashiko K., Kamaltynov R. M., Morino H., Sherbakov D. Yu., “Genetic differentiation among gammarid (Eulimnogammarus cyaneus) populations in Lake Baikal, East Siberia”, Archive Hydrobiology, 148:2 (2000), 249–261
[28] Nevado B., Mautner S., Sturmbauer C., Verheyen E., “Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species”, Mol. Ecol., 22:15 (2013), 3933–3948 | DOI
[29] Duftner N., Sefc K. M., Koblmüller S., Nevado B., Verheyen E., Phiri H., Sturmbauer C., “Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika”, Mol. Ecol., 15:9 (2006), 2381–2395 | DOI
[30] Kelly R. P., Palumbi S. R., “Genetic Structure Among 50 Species of the northeastern pacific rocky intertidal community”, PLoS ONE, 5 (2010), e8594 | DOI
[31] Semovskii S. V., Bukin Yu. S., Scherbakov D. Yu., “Vidoobrazovanie v odnomernoi populyatsii: adaptivnaya dinamika i neitralnaya evolyutsiya”, Issledovano v Rossii, 125 (2002), 1385–1396 ; http://zhurnal.ape.relarn.ru/articles/2002/125.pdfhttp://lin.irk.ru/pdf/5847.pdf
[32] Semovski S. V., Bukin Yu. S., Sherbakov D. Yu., “Speciation and neutral molecular evolution in one-dimensional closed population”, Int. J. of Modern Physics C, 14:7 (2003), 973–983 | DOI
[33] Bukin Ju. S., Pudovkina T. A., Sherbakov D. Ju., Sitnikova T. Ya., “Genetic flows in a structured one-dimensional population: simulation and real data on Baikalian polychaetes M. Godlewskii”, Silico Biology, 7:3 (2007), 277–284
[34] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskix soobschestv, Nauka, M., 1987, 353 pp.
[35] Doebeli M., Dieckmann U., “Speciation along environmental gradients”, Nature, 421 (2003), 259–264 | DOI
[36] Doebeli M., Dieckmann U., “Evolutionary branching and sympatric speciation caused by different types of ecological interactions”, Am. Nat., 156 (2000), 77–101 | DOI
[37] Kondrashov A. S., “Multilocus model of sympatric speciation. III: Computer simulations”, Theor. Pop. Biol., 29 (1986), 1–15 | DOI
[38] Dieckmann U., Doebeli M., Metz J. A. J., Tautz D., Adaptive Speciation, Cambridge University Press, 2004, 445 pp.
[39] Semovski S. V., Verheyen E., Sherbakov D. Y., “Simulating the evolution of neutrally evolving sequences in a population under environmental changes”, Ecological Modelling, 176 (2004), 99–107 | DOI
[40] Semovskii S. V., Bukin Yu. S., Scherbakov D. Yu., “Modeli simpatricheskogo vidoobrazovaniya v izmenyayuschikhsya usloviyakh sredy”, Sibirskii ekologicheskii zhurnal, 5 (2004), 621–627
[41] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, 5-e izd., Nauka, M., 1977, 735 pp.
[42] Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods”, Molecular Biology and Evolution, 28 (2011), 2731–2739 | DOI
[43] Kumar S., Stecher G., Peterson D., Tamura K., “MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis”, Bioinformatics, 28 (2012), 2685–2686 | DOI