An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 438-452.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an individual-based model describing the genetic processes in population of species with one-dimensional (belt shaped) area of spreading is proposed. In the process of modelling the following factors are considered: the initial distribution of organisms in area; mobility of individuals; density of distribution of resources in the area; probability of nucleotide substitution in mitochondrial and nuclear genetic markers; duration of the simulation process in generation units. The model is developed to "play" different scenarios of formation of the genetic diversity. DNA sequences obtained by using the simulation can be compared with ones from samples of natural populations of organisms in order to verify various hypotheses of formation of genetic diversity. The open source software can be found at URL https://yadi.sk/d/80YAOsvYckiTr.
@article{MBB_2014_9_2_a12,
     author = {Yu. S. Bukin and A. L. Gorbylev},
     title = {An {Individual-Based} {Model} to {Simulate} {Genetic} {Processes} in {Populations} of {Species} {Inhabiting} {One-Dimensional} {Area}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {438--452},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/}
}
TY  - JOUR
AU  - Yu. S. Bukin
AU  - A. L. Gorbylev
TI  - An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 438
EP  - 452
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/
LA  - ru
ID  - MBB_2014_9_2_a12
ER  - 
%0 Journal Article
%A Yu. S. Bukin
%A A. L. Gorbylev
%T An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 438-452
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/
%G ru
%F MBB_2014_9_2_a12
Yu. S. Bukin; A. L. Gorbylev. An Individual-Based Model to Simulate Genetic Processes in Populations of Species Inhabiting One-Dimensional Area. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 2, pp. 438-452. http://geodesic.mathdoc.fr/item/MBB_2014_9_2_a12/

[1] Altukhov Yu. P., Geneticheskie protsessy v populyatsiyakh, IKTs Akademkniga, M., 2003, 432 pp.

[2] Etheridge A., Some Mathematical Models from Population Genetics, Springer, 2011, 119 pp.

[3] Wright S., “Evolution in Mendelian populations”, Genetics, 16 (1931), 97–159

[4] Wright S., “The genetical structure of population”, Ann. Eugenics, 15 (1951), 323–354 | DOI

[5] Kimura M., ““Stepping stone” model of population”, Ann. Rep. Nat. Ist. Genet. Mishima, 3 (1953), 63–65

[6] Kimura M., Weiss G. H., “The stepping stone model of population structure and decrease of genetic correlation with distance”, Genetics, 49 (1964), 561–567

[7] Wright S., “Isolation by distance”, Genetics, 28 (1943), 114–138

[8] Maruyama T., “Effective number of alleles in a subdivided population”, Theor. Popul. Biol., 1 (1970), 273–306 | DOI

[9] Slatkin M., “Inbreeding coefficients and coalescence times”, Genet. Res., 58 (1991), 167–175 | DOI

[10] Strobeck C., “Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision”, Genetics, 117 (1987), 149–153

[11] Guillot G., “On the inference of spatial structure from population genetics data”, Bioinformatics, 25, 1796–180 | DOI

[12] Wilkins J. F., Wakeley J., “The Coalescent in a continuous, finite, linear population”, Genetics, 161 (2002), 873–888

[13] Hudson R. R., Slatkin M., Maddison W. P., “Estimation of levels of gene flow from DNA sequence data”, Genetics, 132 (1992), 583–589

[14] Bocquet-Appel J. P., Bacro J. N., “Isolation by distance, trend surface analysis, and spatial autocorrelation”, Human Biology, 65 (1993), 11–27

[15] Slatkin M., Maddison W. P., “Detecting isolation by distance using phylogenies of genes”, Genetics, 126 (1990), 249–260

[16] Jensen J. L., Bohonak A. J., Kelley S. T., “Isolation by distance, web service”, BMC Genetics, 6 (2005), 13 | DOI

[17] Carvajal-Rodríguez A., “GENOMEPOP: A program to simulate genomes in populations”, BMC Bioinformatics, 9 (2008)

[18] Laval G., Excoffier L., “SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history”, Bioinformatics, 20 (2004), 2485–2487 | DOI

[19] Anderson C. N. K., Ramakrishnan U., Chan Y. L., Hadly E. A., “Serial SimCoal: A population genetics model for data from multiple populations and points in time”, Bioinformatics, 21 (2005), 1733–1734 | DOI

[20] Landguth E. L., Cushman S. A., “CDPOP: A spatially-explicit cost distance population genetics program”, Molecular Ecology Resources, 10 (2010), 156–161 | DOI

[21] Strand A. E., Niehaus J. M., “KERNELPOP, a spatially explicit population genetic simulation engine”, Mol. Ecol. Notes, 7 (2007), 969–973 | DOI

[22] Strand A. E., “Metasim 1.0: an individual-based environment for simulating population genetics of complex population dynamics”, Mol. Ecol. Notes, 2 (2002), 373–376 | DOI

[23] Balloux F., “EASYPOP (version 1.7): a computer program for population genetics simulations”, J. Hered., 92 (2001), 301–302 | DOI

[24] Gomanenko G. V., Kamaltynov R. M., Kuzmenkova Zh. V., Berenos K., Scherbakov D. Yu., “Populyatsionnaya struktura baikalskogo bokoplava Gmelinoides fasciatus (Stebbing)”, Genetika, 41:8 (2005), 1108–1114

[25] Peretolchina T. E., Bukin T. Ya., Sitnikova T. Ya., Scherbakov D. Yu., “Geneticheskaya differentsiatsiya endemichnogo baikalskogo vida Baicalia sarinata (Mollusca: Caenogastropoda)”, Genetika, 43:12 (2007), 1–9

[26] Mashiko K., Kamaltynov R. M., Sherbakov D. Yu., Morino H., “Genetic separation of gammarid (Eulimnogammarus cyaneus) populations by localized topographic changes in ancient Lake Baikal”, Archive Hydrobiology, 139:3 (1997), 379–387

[27] Mashiko K., Kamaltynov R. M., Morino H., Sherbakov D. Yu., “Genetic differentiation among gammarid (Eulimnogammarus cyaneus) populations in Lake Baikal, East Siberia”, Archive Hydrobiology, 148:2 (2000), 249–261

[28] Nevado B., Mautner S., Sturmbauer C., Verheyen E., “Water-level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species”, Mol. Ecol., 22:15 (2013), 3933–3948 | DOI

[29] Duftner N., Sefc K. M., Koblmüller S., Nevado B., Verheyen E., Phiri H., Sturmbauer C., “Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika”, Mol. Ecol., 15:9 (2006), 2381–2395 | DOI

[30] Kelly R. P., Palumbi S. R., “Genetic Structure Among 50 Species of the northeastern pacific rocky intertidal community”, PLoS ONE, 5 (2010), e8594 | DOI

[31] Semovskii S. V., Bukin Yu. S., Scherbakov D. Yu., “Vidoobrazovanie v odnomernoi populyatsii: adaptivnaya dinamika i neitralnaya evolyutsiya”, Issledovano v Rossii, 125 (2002), 1385–1396 ; http://zhurnal.ape.relarn.ru/articles/2002/125.pdfhttp://lin.irk.ru/pdf/5847.pdf

[32] Semovski S. V., Bukin Yu. S., Sherbakov D. Yu., “Speciation and neutral molecular evolution in one-dimensional closed population”, Int. J. of Modern Physics C, 14:7 (2003), 973–983 | DOI

[33] Bukin Ju. S., Pudovkina T. A., Sherbakov D. Ju., Sitnikova T. Ya., “Genetic flows in a structured one-dimensional population: simulation and real data on Baikalian polychaetes M. Godlewskii”, Silico Biology, 7:3 (2007), 277–284

[34] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskix soobschestv, Nauka, M., 1987, 353 pp.

[35] Doebeli M., Dieckmann U., “Speciation along environmental gradients”, Nature, 421 (2003), 259–264 | DOI

[36] Doebeli M., Dieckmann U., “Evolutionary branching and sympatric speciation caused by different types of ecological interactions”, Am. Nat., 156 (2000), 77–101 | DOI

[37] Kondrashov A. S., “Multilocus model of sympatric speciation. III: Computer simulations”, Theor. Pop. Biol., 29 (1986), 1–15 | DOI

[38] Dieckmann U., Doebeli M., Metz J. A. J., Tautz D., Adaptive Speciation, Cambridge University Press, 2004, 445 pp.

[39] Semovski S. V., Verheyen E., Sherbakov D. Y., “Simulating the evolution of neutrally evolving sequences in a population under environmental changes”, Ecological Modelling, 176 (2004), 99–107 | DOI

[40] Semovskii S. V., Bukin Yu. S., Scherbakov D. Yu., “Modeli simpatricheskogo vidoobrazovaniya v izmenyayuschikhsya usloviyakh sredy”, Sibirskii ekologicheskii zhurnal, 5 (2004), 621–627

[41] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, 5-e izd., Nauka, M., 1977, 735 pp.

[42] Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods”, Molecular Biology and Evolution, 28 (2011), 2731–2739 | DOI

[43] Kumar S., Stecher G., Peterson D., Tamura K., “MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis”, Bioinformatics, 28 (2012), 2685–2686 | DOI