Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 171-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results are based on the first principal modeling and calculations for hydroxyapatite (HAP) nanostructures as native as well surface modified, charged and having various defects (H and OH vacancies, H internodes). HAP structures having being studied using Local Density Approximation (LDA) method with calculations of Density of States (DOS) allow us analyzing the experimental forbidden energy gap ($Eg$) and work function data. Molecular modeling by HyperChem is confirmed by photo-electron monochromatic measurements up to 6 eV and photo-luminescence (PL) data from synchrotron DESY experimental data up to 30 eV values. Brief analysis of the influence of heating, microwave radiation, hydrogenation, x-rays and synchrotron radiation on HAP surface is presented in this work. New data of the structure of modified hydroxyapatite are obtained. The determined energy levels for H internodes is $E_{\mathrm{H}-int} \sim E_\nu + (1.5$$2.0)$ eV, while for OH vacancy energy is in the range of $E_{\mathrm{OH}-vac} \sim E_\nu + (2.9$$3.4)$ eV inside the forbidden zone $Eg$. The analysis of PL emission allows us to conclude that these energies are close to observed main PL spectral line 420 nm (2.95 eV), and consequently OH vacancy could play the leading role in the surface energy levels changes and charging. But the influence of the inserted hydrogen is revealed too through excitation from most deep valence band levels due to existence of close overlapped molecular orbital with phosphorus atoms in the excited states. Both defects are observed by PL emission spectrum under synchrotron excitation energy in diapason $\sim8.5$$14.5$ eV.
@article{MBB_2014_9_1_a8,
     author = {A. V. Bystrova and Yu. D. Dekhtyar and A. I. Popov and V. S. Bystrov},
     title = {Modeling and {Synchrotron} {Data} {Analysis} of {Modified} {Hydroxyapatite} {Structure}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {171--182},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a8/}
}
TY  - JOUR
AU  - A. V. Bystrova
AU  - Yu. D. Dekhtyar
AU  - A. I. Popov
AU  - V. S. Bystrov
TI  - Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 171
EP  - 182
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a8/
LA  - en
ID  - MBB_2014_9_1_a8
ER  - 
%0 Journal Article
%A A. V. Bystrova
%A Yu. D. Dekhtyar
%A A. I. Popov
%A V. S. Bystrov
%T Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 171-182
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a8/
%G en
%F MBB_2014_9_1_a8
A. V. Bystrova; Yu. D. Dekhtyar; A. I. Popov; V. S. Bystrov. Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 171-182. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a8/

[1] Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokolova V., J. Mater. Chem., 20:1 (2010), 18–23 | DOI

[2] Ratner B. D., Hoffman A. S., Biomaterial Science, Academic Press, London, 1996

[3] Bystrov V. S., Paramonova E., Dekhtyar Yu., Katashev A., Karlov A., Polyaka N., Bystrova A. V., Patmalnieks A., Kholkin A. L., “Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles”, J. Phys.: Condens. Matter, 23 (2011), 065302 | DOI

[4] Bystrov V. S., Bystrova N. K., Paramonova E. V., Dekhtyar Yu. D., “Interaction of charged hydroxyapatite and living cells. I: Hydroxyapatite polarization properties”, Mathematical biology and bioinformatics, 4:2 (2009), 7–11

[5] PERCERAMICS: Multifunctional percolated nanostructured ceramics fabricated from hydroxyapatyte, NMP3-CT-2003-504937 FP6 project: Final Report Summary, http://cordis.europa.eu/result/report/rcn/51676_en.html

[6] Dekhtyar Yu., Polyaka N., Sammons R., IFMBE Proceedings, 20 (2008), 23–25 | DOI

[7] Dekhtyar Yu., Bystrov V., Bystrova A., Dindune A., Katashev A., Khlusov I., Palcevskis E., Paramonova E., Polyaka N. N., Romanova M., Sammons R., Veljovic D., IFMBE Proceedings, 38 (2013), 182–185 | DOI

[8] Martins M., Santos C., Almeida M., Costa E., J. Coll. Interface Sci., 2008, 210–216 | DOI

[9] Bystrov V., Costa E., Santos S., Almeida M., Kholkin A., Dekhtyar Yu., Bystrova A. V., Kopyl S., Paramonova E. V., “Computational study of hydroxyapatite properties and surface interactions”, IEEE Conf. Publications, 2012, 1–3

[10] Mostafa N. Y., Brown P. W., J. Phys. Chem. Solids, 68 (2007), 431 | DOI

[11] Tofail S. A. M., Harvety D., Stanton K. T., McMonagle J. B., “Structural order and dielectric behaviour of hydroxyaopatite”, Ferroelectrics, 319:1 (2005), 117–123 | DOI

[12] Slepko A., Demkov A. A., “First-principles study of biomineral hydroxyapatite”, Phys. Rev. B, 84 (2011), 134108 | DOI

[13] Matsunaga K., Kuwabara A., “First-principles study of vacancy formation in hydroxyapatite”, Phys. Rev. B, 75 (2007), 014102 | DOI

[14] Bystrov V. S., Paramonova E. V., Costa M. E., Santos C., Almeida M., Kopyl S., Dekhtyar Yu., Bystrova A. V., Maevsky E. I., Pullar R. C., Kholkin A. L., “A Computational Study of the Properties and Surface Interactions of Hydroxyapatite”, Ferroelectrics, 249 (2013), 94–101 | DOI

[15] Aronov D., Chaikina M., Haddad J., Karlov A., Mezinskis G., Oster L., Pavlovska I., Rosenman G., “Electronic states spectroscopy of Hydroxyapatite ceramics”, J. Mater. Sci.: Mater. Med., 18:5 (2007), 865–870 | DOI