Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2014_9_1_a4, author = {S. Yu. Kovalenko and A. S. Bratus'}, title = {Up and {Down} {Estimate} of {Therapy} {Quality} in {Non-Linear} {Distributed} {Mathematical} {Glioma} {Model}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {20--32}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a4/} }
TY - JOUR AU - S. Yu. Kovalenko AU - A. S. Bratus' TI - Up and Down Estimate of Therapy Quality in Non-Linear Distributed Mathematical Glioma Model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2014 SP - 20 EP - 32 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a4/ LA - ru ID - MBB_2014_9_1_a4 ER -
%0 Journal Article %A S. Yu. Kovalenko %A A. S. Bratus' %T Up and Down Estimate of Therapy Quality in Non-Linear Distributed Mathematical Glioma Model %J Matematičeskaâ biologiâ i bioinformatika %D 2014 %P 20-32 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a4/ %G ru %F MBB_2014_9_1_a4
S. Yu. Kovalenko; A. S. Bratus'. Up and Down Estimate of Therapy Quality in Non-Linear Distributed Mathematical Glioma Model. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a4/
[1] Murray D., Mathematical Biology, v. 2, Spatial Models and Biomedical Applications, Springer, 2003 | MR
[2] Shilbergeld D. L., Chicoine M. R., “Isolation and Characterization of human malignant glioma cells from histologically normal brain”, J. Neuwsurg., 86 (1997), 525–531 | DOI
[3] Swanson K. R., Alvord E. C. (Jr.), Murray J. D., “Virtual Resection of Gliomas: Effect of Extent of Resection on Recurrence”, Mathematical and Computer Modelling, 37:11 (2003), 1177–1190 | DOI | Zbl
[4] Matsukado Y., McCarthy C. S., Kernohan J. W., “The Growth of glioblastoma multiforme (asytrocytomas, grades 3 and 4) in neurosurgical practice”, J. Neuwsurg., 18 (1961), 636–644 | DOI
[5] Jbabdi S., Mandonnet E., Du au H., Capelle L., Swanson K. R., Pelegrini-Issac M., Guillevin R., Benali H., “Simulation of Anisotropic Growth of Low-Grade Gliomas Using Di usion Tensor Imaging”, Magnetic Resonance in Medicine, 54 (2005), 616–624 | DOI
[6] Tracqui P., “From passive diffusion to active cellular migration in mathematical models of tumour invasion”, Acta Biotheoretica, 43 (1995), 443–464 | DOI
[7] Bratus A. S., Chumerina E. S., “Cintez optimalnogo upravleniya v zadache vybora lekarstvennogo vozdeistviya na rastuschuyu opukhol”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:6 (2008), 946–966 | MR | Zbl
[8] Butkovskii A. G., Teoriya optimalnogo upravlenie sistemami s raspredelennymi parametrami, Nauka, M., 1965 | MR
[9] Melikyan A. A., “Singular characteristics of HJBI equation in state constraint optimal control problems”, Preprints of IFAC Symposium Modeling and control of economic system (Klagenfert, 2001), 155–156 | MR
[10] Vasilev F. P., Metody optimizatsi, v. 2, MTsNMO, M., 2011
[11] Avvakumov S. N., Kiselev Yu. N., “Nekotorye algoritmy optimalnogo upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 3–17 | Zbl