Conditions for the Existence of Polaron States in Classical Molecular Chains at Finite Temperatures
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 1-3.

Voir la notice de l'article provenant de la source Math-Net.Ru

Today in many articles the polaron states are calculated in classical molecular chains for zero temperature. At the same time it is assumed that polaron properties do not change significantly, if the temperature is nonzero, but much smaller than the characteristic energy equal to the depth of the polaron level. However, the results of computational experiments lead us to suggestion that in infinitely long chain the polaron is destroyed at any small different from zero temperature. The paper is devoted to the resolution of described "paradoxical" situation.
@article{MBB_2014_9_1_a14,
     author = {V. D. Lakhno and N. S. Fialko},
     title = {Conditions for the {Existence} of {Polaron} {States} in {Classical} {Molecular} {Chains} at {Finite} {Temperatures}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {1--3},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a14/}
}
TY  - JOUR
AU  - V. D. Lakhno
AU  - N. S. Fialko
TI  - Conditions for the Existence of Polaron States in Classical Molecular Chains at Finite Temperatures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 1
EP  - 3
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a14/
LA  - ru
ID  - MBB_2014_9_1_a14
ER  - 
%0 Journal Article
%A V. D. Lakhno
%A N. S. Fialko
%T Conditions for the Existence of Polaron States in Classical Molecular Chains at Finite Temperatures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 1-3
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a14/
%G ru
%F MBB_2014_9_1_a14
V. D. Lakhno; N. S. Fialko. Conditions for the Existence of Polaron States in Classical Molecular Chains at Finite Temperatures. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 1-3. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a14/

[1] Korshunova A. N., Lakhno V. D., “Modelirovanie obrazovaniya solitona v odnorodnoi tsepochke”, Matematicheskoe modelirovanie, 19 (2007), 3–13

[2] Lakhno V. D., Korshunova A. N., “Modelirovanie obrazovaniya samozakhvachennogo sostoyaniya v polinukleotidnoi tsepochke”, Nelineinaya dinamika, 4:2 (2008), 193–214

[3] Lakhno V. D., Korshunova A. N., “Formation of stationary electronic states in finite homogeneous molecular chains”, Matematicheskaya biologiya i bioinformatika, 5:1 (2010), 1–29

[4] Lakhno V. D., Fialko N. S., “Razval polyarona v odnorodnom polinukleotide pod vliyaniem temperatury termostata”, Matematicheskaya biologiya i bioinformatika, Doklady III Mezhdunarodnoi konferentsii (Puschino, 10–15 oktyabrya 2010 g.), MAKS Press, M., 2010, 20–21

[5] Lakhno V. D., “Davydov's solitons in homogeneous nucleotide chain”, International Journal of Quantum Chemistry, 110 (2010), 127–137 | DOI