Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2014_9_1_a13, author = {I. Ye. Yegorov}, title = {Optimal {Feedback} {Control} in a {Mathematical} {Model} of {Malignant} {Tumour} {Treatment} with the {Immune} {Reaction} {Taken} {Into} {Account}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {257--272}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/} }
TY - JOUR AU - I. Ye. Yegorov TI - Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account JO - Matematičeskaâ biologiâ i bioinformatika PY - 2014 SP - 257 EP - 272 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/ LA - ru ID - MBB_2014_9_1_a13 ER -
%0 Journal Article %A I. Ye. Yegorov %T Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account %J Matematičeskaâ biologiâ i bioinformatika %D 2014 %P 257-272 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/ %G ru %F MBB_2014_9_1_a13
I. Ye. Yegorov. Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 257-272. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/
[1] Aranjo R. P., Mcelwain D. G., “A history of the study of solid tumour growth: The contribution of mathematical modelling”, Bulletin of Mathematical Biology, 66 (2004), 1039–1091 | DOI
[2] Tan W.-Y., Hanin L. (eds.), Handbook of Cancer Models with Applications, World Scientific Publishing, 2008
[3] Stepanova N. V., “Dinamika immunnoi reaktsii pri razvitii zlokachestvennoi opukholi”, Biofizika, 24:5 (1979), 890
[4] Ledzewicz U., Naghnaeian M., Schattler H., “An optimal control approach to cancer treatment under immunological activity”, Applicationes Mathematicae, 38:1 (2011), 17–31 | DOI | Zbl
[5] Ledzewicz U., Schattler H., “The influence of PK/PD onthestructure of optimal controls in cancer chemotherapy models”, Mathematical Biosciences and Engineering, 2:3 (2005), 561–578 | DOI | Zbl
[6] Bratus A. S., Chumerina E. S., “Sintez optimalnogo upravleniya v zadache vybora lekarstvennogo vozdeistviya na rastuschuyu opukhol”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:6 (2008), 946–966 | Zbl
[7] Chumerina E. S., “Vybor optimalnoi strategii khimioterapii v modeli Gompertsa”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2 (2009), 170–176 | Zbl
[8] Antipov A. V., Bratus A. S., “Matematicheskaya model optimalnoi strategii khimioterapii s uchetom dinamiki chisla kletok neodnorodnoi opukholi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 49:11 (2009), 1907–1919 | Zbl
[9] Bratus A. S., Zaichik S. Yu., “Gladkoe reshenie uravneniya Gamiltona–Yakobi–Bellmana v matematicheskoi modeli optimalnoi terapii virusnykh infektsii”, Differentsialnye uravneniya, 46:11 (2010), 1571–1583 | Zbl
[10] Bratus A. S., Fimmel E., Todorov Y., Semenov Y. S., Nuernberg F., “On strategies on a mathematical model for leukaemia therapy”, Nonlinear Analysis: Real World Applications, 13 (2012), 1044–1059 | DOI | Zbl
[11] Bratus A., Todorov Y., Yegorov I., Yurchenko D., “Solution of the feedback control problem in the mathematical model of leukaemia therapy”, Journal of Optimization Theory and Applications, 159:3 (2013), 590–605 | DOI | Zbl
[12] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998, 278 pp.
[13] Subbotina N. N., “Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii”, Sovremennaya matematika i ee prilozheniya, 20 (2004), 3–132
[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | Zbl
[15] De Pillis L. G., Radunskaya A., “A mathematical tumor model with immune resistance and drug therapy: An optimal control approach”, Journal of Theoretical Medicine, 3 (2001), 79–100 | DOI | Zbl