Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 257-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem for a mathematical model of malignant tumour treatment with the immune reaction taken into account is considered. The toxicity effect of the chemotherapeutic agent on both tumour and immunocompetent cells is taken into account; increasing therapy functions are considered. A standard linear pharmacokinetic equation for the chemotherapeutic agent is added to the system. The aim is to find an optimal strategy of treatment to minimize the tumour volume while at the same time keeping the immune response not lower than a fixed permissible level as far as possible. Sufficient conditions for the existence of not more than one switching and not more than two switchings without singular regimes are obtained. The surfaces in the extended phase space, on which the last switching in direct time (i.e., the first switching in inverse time) appears, are constructed analytically. The results of numerical simulations are shown.
@article{MBB_2014_9_1_a13,
     author = {I. Ye. Yegorov},
     title = {Optimal {Feedback} {Control} in a {Mathematical} {Model} of {Malignant} {Tumour} {Treatment} with the {Immune} {Reaction} {Taken} {Into} {Account}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {257--272},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/}
}
TY  - JOUR
AU  - I. Ye. Yegorov
TI  - Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 257
EP  - 272
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/
LA  - ru
ID  - MBB_2014_9_1_a13
ER  - 
%0 Journal Article
%A I. Ye. Yegorov
%T Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 257-272
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/
%G ru
%F MBB_2014_9_1_a13
I. Ye. Yegorov. Optimal Feedback Control in a Mathematical Model of Malignant Tumour Treatment with the Immune Reaction Taken Into Account. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 257-272. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a13/

[1] Aranjo R. P., Mcelwain D. G., “A history of the study of solid tumour growth: The contribution of mathematical modelling”, Bulletin of Mathematical Biology, 66 (2004), 1039–1091 | DOI

[2] Tan W.-Y., Hanin L. (eds.), Handbook of Cancer Models with Applications, World Scientific Publishing, 2008

[3] Stepanova N. V., “Dinamika immunnoi reaktsii pri razvitii zlokachestvennoi opukholi”, Biofizika, 24:5 (1979), 890

[4] Ledzewicz U., Naghnaeian M., Schattler H., “An optimal control approach to cancer treatment under immunological activity”, Applicationes Mathematicae, 38:1 (2011), 17–31 | DOI | Zbl

[5] Ledzewicz U., Schattler H., “The influence of PK/PD onthestructure of optimal controls in cancer chemotherapy models”, Mathematical Biosciences and Engineering, 2:3 (2005), 561–578 | DOI | Zbl

[6] Bratus A. S., Chumerina E. S., “Sintez optimalnogo upravleniya v zadache vybora lekarstvennogo vozdeistviya na rastuschuyu opukhol”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:6 (2008), 946–966 | Zbl

[7] Chumerina E. S., “Vybor optimalnoi strategii khimioterapii v modeli Gompertsa”, Izvestiya RAN. Teoriya i sistemy upravleniya, 2 (2009), 170–176 | Zbl

[8] Antipov A. V., Bratus A. S., “Matematicheskaya model optimalnoi strategii khimioterapii s uchetom dinamiki chisla kletok neodnorodnoi opukholi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 49:11 (2009), 1907–1919 | Zbl

[9] Bratus A. S., Zaichik S. Yu., “Gladkoe reshenie uravneniya Gamiltona–Yakobi–Bellmana v matematicheskoi modeli optimalnoi terapii virusnykh infektsii”, Differentsialnye uravneniya, 46:11 (2010), 1571–1583 | Zbl

[10] Bratus A. S., Fimmel E., Todorov Y., Semenov Y. S., Nuernberg F., “On strategies on a mathematical model for leukaemia therapy”, Nonlinear Analysis: Real World Applications, 13 (2012), 1044–1059 | DOI | Zbl

[11] Bratus A., Todorov Y., Yegorov I., Yurchenko D., “Solution of the feedback control problem in the mathematical model of leukaemia therapy”, Journal of Optimization Theory and Applications, 159:3 (2013), 590–605 | DOI | Zbl

[12] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998, 278 pp.

[13] Subbotina N. N., “Metod kharakteristik dlya uravnenii Gamiltona–Yakobi i ego prilozheniya v dinamicheskoi optimizatsii”, Sovremennaya matematika i ee prilozheniya, 20 (2004), 3–132

[14] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | Zbl

[15] De Pillis L. G., Radunskaya A., “A mathematical tumor model with immune resistance and drug therapy: An optimal control approach”, Journal of Theoretical Medicine, 3 (2001), 79–100 | DOI | Zbl