Modelling of Hemodynamic Processes in Cardiovascular System on the Base of Peripheral Arterial Pulsation
Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 195-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the practical method of individual hemodynamic model construction on the base of well-known system of equations in hemodynamics integrated experimental data of peripheral arterial pulsation in the equation of the state of vessel had been described. The distinctive feature of described approach is opportunity to encount individual characteristics of cardiovascular system performance reflected by blood volume changes in peripheral vessels. It gives an opportunity to reproduce or predict blood flow parameters for each individual case in the real time, which provides one with valuable information for application in health monitoring of cardiovascular system.
@article{MBB_2014_9_1_a10,
     author = {N. V. Sviridova and V. D. Vlasenko},
     title = {Modelling of {Hemodynamic} {Processes} in {Cardiovascular} {System} on the {Base} of {Peripheral} {Arterial} {Pulsation}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {195--205},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a10/}
}
TY  - JOUR
AU  - N. V. Sviridova
AU  - V. D. Vlasenko
TI  - Modelling of Hemodynamic Processes in Cardiovascular System on the Base of Peripheral Arterial Pulsation
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2014
SP  - 195
EP  - 205
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a10/
LA  - ru
ID  - MBB_2014_9_1_a10
ER  - 
%0 Journal Article
%A N. V. Sviridova
%A V. D. Vlasenko
%T Modelling of Hemodynamic Processes in Cardiovascular System on the Base of Peripheral Arterial Pulsation
%J Matematičeskaâ biologiâ i bioinformatika
%D 2014
%P 195-205
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a10/
%G ru
%F MBB_2014_9_1_a10
N. V. Sviridova; V. D. Vlasenko. Modelling of Hemodynamic Processes in Cardiovascular System on the Base of Peripheral Arterial Pulsation. Matematičeskaâ biologiâ i bioinformatika, Tome 9 (2014) no. 1, pp. 195-205. http://geodesic.mathdoc.fr/item/MBB_2014_9_1_a10/

[1] Fedotov A. A., Akulov S. A., Matematicheskoe modelirovanie i analiz pogreshnostei izmeritelnykh preobrazovatelei biomeditsinskikh signalov, Fizmatlit, M., 2013, 282 pp.

[2] Astrakhantseva E. V., Gidaspov V. Yu., Reviznikov D. L., “Matematicheskoe modelirovanie gemodinamiki krupnykh krovenosnykh sosudov”, Matematicheskoe modelirovanie, 17:8 (2005), 61–80 | Zbl

[3] Glass L., “Introduction to controversial topics in nonlinear science: is the normal heart rate chaotic”, Chaos, 19 (2009), 1–4 | DOI

[4] Bezruchenko B. P., Gridnev V. I., Karavaev A. S., Kiselev A. R., Ponomarenko V. I., Prokhorov M. D., Ruban E. I., “Metodika issledovaniya sinkhronizatsii kolebatelnykh protsessov s chastotoi 0.1 Gts v serdechno-sosudistoi sisteme cheloveka”, Izvestiya vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 17:6 (2009), 44–56

[5] Voss A., Schulz S., Schroeder R., Baumert M., Caminal P., “Methods derived from nonlinear dynamics for analyzing heart rate variability”, Philosophical Transactions of the Royal Society A, 367 (2009), 277–296 | DOI | Zbl

[6] Poon Ch.-S., Merrill Ch. K., “Decrease of cardiac chaos in congestive heart failure”, Nature, 389 (1997), 492–495 | DOI

[7] Pham T. D., Thang T. C., Oyama-Higa M., Sugiyama M., “Mental-disorder detection using chaos and nonlinear dynamical analysis of photoplethysmographic signals”, Chaos, Solitons Fractals, 51 (2013), 64–74 | DOI

[8] Tsuda I., Tahara T., Iwanaga H., “Chaotic pulsation in human capillary vessels and its dependence on mental and physical conditions”, International Journal of Bifurcation and Chaos, 2 (1992), 313–324 | DOI | Zbl

[9] Rammos K. St., Rammos K. St., Koullias G. J., Pappou T. J., Bakas A. J., Panagopoulos P. G., Tsangaris S. G., “A computer model for the prediction of left epicardial coronary blood flow in normal, stenotic and bypassed coronary arteries, by single or sequential grafting”, Cardiovascular Surgery, 6 (1988), 635–648 | DOI

[10] Astrakhantseva E. V., Gidaspov V. Yu., Pirimov U. G., Reviznikov D. L., “Chislennoe modelirovanie gemodinamicheskikh protsessov v arterialnom dereve. Issledovanie vliyaniya perezhatiya sosuda na parametr techeniya”, Matematicheskoe modelirovanie, 18:8 (2006), 25–36

[11] Abakumov M. V., Ashmetkov I. V., Esikova N. B., Koshelev V. B., Mukhin S. I., Sosin N. V., Tishkin V. F., Favorskii A. P., Khrulenko A. B., “Metodika matematicheskogo modelirovaniya serdechno-sosudistoi sistemy”, Matematicheskoe modelirovanie, 12:2 (2000), 106–117 | Zbl

[12] Allen J., “Photoplethysmography and its application in clinical physiological measurement”, Physiological Measurement, 28 (2007), 1–39 | DOI

[13] Bubenchikov A. M., Firsov D. K., Albrandt E. V., “Chislennoe issledovanie techeniya zhidkosti v krovenosnykh sosudakh s anevrizmoi”, Trudy Mezhdunarodnoi konferentsii RDAMM, Ch. 2, spets. vypusk (Novosibirsk, 2001), v. 6, 134–137

[14] Koshelev V. B., Mukhin S. I., Sokolova T. V., Sosnin N. V., Favorskii A. P., “Matematicheskoe modelirovanie gemodinamiki serdechno-sosudistoi sistemy s uchetom vliyaniya neiroregulyatsii”, Matematicheskoe modelirovanie, 19:3 (2007), 15–28

[15] Seidel H., Herzel H., “Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex”, Physica D, 115 (1998), 145–160 | DOI | Zbl

[16] Zamir M., The Physics of Coronary Blood Flow, Springer, New York, 2005, 408 pp. | Zbl

[17] Shelhamer M., Nonlinear Dynamics in Physiology. A State-Space Approach, World Scientific, Singapore, 2007, 345 pp. | Zbl

[18] Karavaev A. S., Prokhorov M. D., Ponomarenko V. I., Kiselev A. R., Gridnev V. I., Ruban E. I., Bexruchko B. P., “Synchronization of low-frequency oscillations in the human cardiovascular system”, Chaos, 19 (2009), 1–7 | DOI