Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2013_8_a8, author = {K. V. Lakhman and M. S. Burtsev}, title = {Short-Term {Memory} {Mechanisms} in the {Goal-Directed} {Behavior} of the {Neural} {Network} {Agents}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {419--431}, publisher = {mathdoc}, volume = {8}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_a8/} }
TY - JOUR AU - K. V. Lakhman AU - M. S. Burtsev TI - Short-Term Memory Mechanisms in the Goal-Directed Behavior of the Neural Network Agents JO - Matematičeskaâ biologiâ i bioinformatika PY - 2013 SP - 419 EP - 431 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2013_8_a8/ LA - ru ID - MBB_2013_8_a8 ER -
K. V. Lakhman; M. S. Burtsev. Short-Term Memory Mechanisms in the Goal-Directed Behavior of the Neural Network Agents. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013), pp. 419-431. http://geodesic.mathdoc.fr/item/MBB_2013_8_a8/
[1] Botvinick M. M., Niv Y., Barto A. C., “Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective”, Cognition, 113:3 (2009), 262–280 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cognition.2008.08.011'>10.1016/j.cognition.2008.08.011</ext-link>
[2] Sutton R. S., Barto A. G., Reinforcement Learning: An Introduction, MIT Press, 1998
[3] Sutton R. S., Precup D., Singh S., “Etween MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning”, Artificial Intelligence, 112 (1999), 181–211 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0004-3702(99)00052-1'>10.1016/S0004-3702(99)00052-1</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1716644'>1716644</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0996.68151'>0996.68151</ext-link>
[4] Sutton R. S., Rafols E. J., Koop A., “Temporal abstraction in temporal-difference networks”, Proceedings of NIPS-18, MIT Press, 2006, 1313–1320
[5] Sutton R. S., Modayil J., Delp M., Degris T., Pilarski P. M., White A., Precup D., “Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction”, The 10th International Conference on Autonomous Agents and Multiagent Systems, v. 2, International Foundation for Autonomous Agents and Multiagent Systems, 2011, 761–768
[6] Barto A. G., Mahadevan S., “Recent advances in hierarchical reinforcement learning”, Discrete Event Dynamic Systems, 13:1–2 (2003), 41–77 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1022140919877'>10.1023/A:1022140919877</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1972050'>1972050</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1018.93035'>1018.93035</ext-link>
[7] Satinder S., Lewis R. L., Barto A. G., Where do rewards come from?, Proceedings of the 31st Annual Meeting of the Cognitive Science Society, Cognitive Science Society, 2009, 2601–2606
[8] Sandamirskaya Y., Schöner G., “An embodied account of serial order: How instabilities drive sequence generation”, Neural Networks, 23:10 (2010), 1164–1179 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.neunet.2010.07.012'>10.1016/j.neunet.2010.07.012</ext-link>
[9] Komarov M. A., Osipov G. V., Burtsev M. S., “Adaptive functional systems: Learning with chaos”, Chaos, 20:4 (2010), 045119 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.3521250'>10.1063/1.3521250</ext-link>
[10] Floreano D., Mondada F., “Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot”, From animals to animats 3, Proceedings of the third international conference on Simulation of adaptive behavior, MIT Press, 1994, 421–430
[11] Floreano D., Dürr P., Mattiussi C., “Neuroevolution: from architectures to learning”, Evolutionary Intelligence, 1 (2008), 47–62 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s12065-007-0002-4'>10.1007/s12065-007-0002-4</ext-link>
[12] Schrum J., Miikkulainen R., “Evolving multimodal networks for multitask games”, IEEE Transactions on Computational Intelligence and AI in Games, 4:2 (2012), 94–111 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TCIAIG.2012.2193399'>10.1109/TCIAIG.2012.2193399</ext-link>
[13] Kaelbling L. P., Littman M. L., Moore A. W., “Reinforcement learning: a survey”, Journal of Artificial Intelligence Research, 4 (1996), 237–285
[14] Hochreiter S., Informatik F. F., Bengio Y., Frasconi P., Schmidhuber J., “Gradient flow in recurrent nets: the difficulty of learning long-term dependencies”, Field Guide to Dynamical Recurrent Networks, eds. Kolen J., Kremer S., IEEE Press, 2001
[15] Botvinick M. M., Plaut D. C., “Short-term memory for serial order: A recurrent neural network model”, Psychological Review, 113 (2006), 201–233 <ext-link ext-link-type='doi' href='https://doi.org/10.1037/0033-295X.113.2.201'>10.1037/0033-295X.113.2.201</ext-link>
[16] Grossberg S., “Contour enhancement, short term memory, and constancies in reverberating neural networks”, Studies in Applied Mathematics, 52:3 (1973), 213–257 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=359862'>359862</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0281.92005'>0281.92005</ext-link>
[17] Anokhin P., Biology and Neurophysiology of the Conditioned Reflex and Its Role in Adaptive Behavior, Pergamon Press, 1974
[18] Edelman G., Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, 1987
[19] Taylor J. S., Raes J., “Duplication and divergence: the evolution of new genes and old ideas”, Annual Review of Genetics, 38 (2004), 615–643 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.genet.38.072902.092831'>10.1146/annurev.genet.38.072902.092831</ext-link>
[20] Stanley K. O., Miikkulainen R., “Evolving neural networks through augmenting topologies”, Evolutionary Computation, 10:2 (2002), 99–127 <ext-link ext-link-type='doi' href='https://doi.org/10.1162/106365602320169811'>10.1162/106365602320169811</ext-link>