The Method to Reveal Pathologic Activity of Human Brain in the Magnetic Encephalography Data
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013), pp. 679-690.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method is proposed to find moments of time for averaging without external triggers. The Karhunen–Loeve eigenfunctions are used as a features for signal recognition. The method makes it possible to extract the signal from the experimental data for evoked and spontaneous activity. Application of the method to tinnitus studies revealed gamma-band bursts of activity in several experiments.
@article{MBB_2013_8_a12,
     author = {N. M. Pankratova and M. N. Ustinin and R. R. Llin\'as},
     title = {The {Method} to {Reveal} {Pathologic} {Activity} of {Human} {Brain} in the {Magnetic} {Encephalography} {Data}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {679--690},
     publisher = {mathdoc},
     volume = {8},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_a12/}
}
TY  - JOUR
AU  - N. M. Pankratova
AU  - M. N. Ustinin
AU  - R. R. Llinás
TI  - The Method to Reveal Pathologic Activity of Human Brain in the Magnetic Encephalography Data
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 679
EP  - 690
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_a12/
LA  - ru
ID  - MBB_2013_8_a12
ER  - 
%0 Journal Article
%A N. M. Pankratova
%A M. N. Ustinin
%A R. R. Llinás
%T The Method to Reveal Pathologic Activity of Human Brain in the Magnetic Encephalography Data
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 679-690
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_a12/
%G ru
%F MBB_2013_8_a12
N. M. Pankratova; M. N. Ustinin; R. R. Llinás. The Method to Reveal Pathologic Activity of Human Brain in the Magnetic Encephalography Data. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013), pp. 679-690. http://geodesic.mathdoc.fr/item/MBB_2013_8_a12/

[1] Josephson B. D., “Possible new effects in superconductive tunnelling”, Phys. Lett., 1:7 (1962), 251–253 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0031-9163(62)91369-0'>10.1016/0031-9163(62)91369-0</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0103.23703'>0103.23703</ext-link>

[2] Gnezditskii V. V., Vyzvannye potentsialy mozga v klinicheskoi praktike, MEDpress-inform, M., 2003, 264 pp.

[3] Llinas R. R., Ribary U., Jeanmonod D., Kronberg E., Mitra P. P., “Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography”, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999), 15222 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.96.26.15222'>10.1073/pnas.96.26.15222</ext-link>

[4] Ustinin M. N., Kronberg E., Filippov S. V., Sychev V. V., Sobolev E. V., Llinás R., “Kinematic visualization of human magnetic encephalography”, Mathematical Biology and Bioinformatics, 5:2 (2010), 176–187 (data obrascheniya: 03.09.2013) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads_en/Ustinin2010(5_176).pdf'>http://www.matbio.org/downloads_en/Ustinin2010(5_176).pdf</ext-link>

[5] Schulman J. J., Cancro R., Lowe S., Lu F., Walton K. D., Llinas R. R., “Imaging of thalamocortical dysrhythmia in neuropsychiatry”, Front. Hum. Neurosci., 5 (2011), 69 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fnhum.2011.00069'>10.3389/fnhum.2011.00069</ext-link>

[6] Ustinin M. N., Makhortykh S. A., Molchanov A. M., Olshevets M. M., Pankratov A. N., Pankratova N. M., Sukharev V. I., Sychev V. V., “Zadachi analiza dannykh magnitnoi entsefalografii”, Kompyutery i superkompyutery v biologii, eds. Lakhno V. D., Ustinina M. N., Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 327–348

[7] Andra W., Nowak H. (eds.), Magnetism in Medicine: A Handbook, 2nd edition, 2007

[8] Jirsa V. K., Friedrich R., Haken H., Kelso J. A. S., “A theoretical model of phase transitions in the human brain”, Biological Cybernetics, 71 (1994), 27–35 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF00198909'>10.1007/BF00198909</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0797.92011'>0797.92011</ext-link>

[9] Carver F. W., Fuchs A., Jantzen K. J., Kelso J. A. S., “Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition”, Clinical Neurophysiology, 113 (2002), 1921–1931 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1388-2457(02)00299-7'>10.1016/S1388-2457(02)00299-7</ext-link>

[10] Khaken G., Printsipy raboty golovnogo mozga: Sinergeticheskii podkhod k aktivnosti mozga, povedeniyu i kognitivnoi deyatelnosti, Per Se, M., 2001, 353 pp.

[11] Karhunen K., “Uber lineare Methoden in der Wahrscheinlichkeitsrechnung”, Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 1947, no. 37, 1–79 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=23013'>23013</ext-link>

[12] Loeve M., Probability theory, v. II, Graduate Texts in Mathematics, 46, 4th ed., Springer-Verlag, 1978 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/978-1-4612-6257-2'>10.1007/978-1-4612-6257-2</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=651018'>651018</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0385.60001'>0385.60001</ext-link>

[13] Llinás R. R., Ustinin M. N., Precise frequency-pattern analysis to decompose complex systems into functionally invariant entities, U.S. Patent pending, 2012

[14] Belikova T. P., “Modelirovanie lineinykh filtrov dlya obrabotki rentgenovskikh izobrazhenii v zadachakh meditsinskoi diagnostiki”, Tsifrovaya optika. Obrabotka izobrazhenii i polei v eksperimentalnykh issledovaniyakh, sbornik nauchnykh trudov, Nauka, M., 1990

[15] Belikova T. P., “Sintez lineinykh filtrov dlya vydeleniya diagnosticheski vazhnykh ob'ektov v zadachakh meditsinskoi introskopii”, Tsifrovaya optika v meditsinskoi introskopii, Nauka, M., 1992

[16] Gnezditskii V. V., Obratnaya zadacha EEG i klinicheskaya elektroentsefalografiya (kartirovanie i lokalizatsiya istochnikov elektricheskoi aktivnosti mozga), MEDpress-inform, M., 2004, 624 pp.

[17] Alekseeva N. S., “Otonevrologicheskie metody obsledovaniya differentsialnoi diagnostiki perifericheskogo i tsentralnogo shuma”, Sovremennye aspekty i perspektivy razvitiya otorinolaringologii, materialy yubil. Vseros. nauch.-prakt. konf. (Moskva, 29–20 sent. 2005 g.), Nauch.-klinich. tsentr otorinolaringologii Roszdrava, M., 2005, 28

[18] Pankratova N. M., Ustinin M. N., Molchanov A. M., Linas R., “Matematicheskaya interpretatsiya pereklyuchenii mezhdu rezhimami v signalakh elektricheskoi aktivnosti golovnogo mozga”, Biofizika, 54:5 (2009), 916–920 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2916201'>2916201</ext-link>

[19] Petrukhin A. S., Mukhin K. Yu., Blagosklonova N. K., Alikhanov A. A., Epileptologiya detskogo vozrasta, Meditsina, M., 2000, 623 pp.

[20] Hug A., Bartsch A., Gutschalk A., “Voices behind the left shoulder: Two patients with right-sided temporal lobe epilepsy”, Journal of the Neurological Sciences, 305 (2011), 143–146 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jns.2011.03.029'>10.1016/j.jns.2011.03.029</ext-link>

[21] Astasheva E. V., Kichigina V. F., “Narushenie ostsillyatornoi aktivnosti i mezhstrukturnykh vzaimodeistvii v mozge pri farmakologicheskom kindlinge medialnoi septalnoi oblasti”, Fundamentalnye issledovaniya, 2013, no. 4(5), 1114–1119