Molecular Mechanisms of Interaction between Human Tumor Necrosis Factor and CrmB TNF-binding Proteins of Cowpox and Variola Viruses
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 467-479.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recombinant viral proteins inhibiting Tumor Necrosis Factor (TNF) activity could be used for development of new drugs for the inflammatory diseases treatment. Computer simulation of the complexes of interacting proteins and recognition of their interaction patterns allow to plan site directed mutagenesis studies and to predict modified forms of TNF-binding proteins of Orthopoxviruses with improved binding affinity and TNF neutralizing activity. Computer models based on the X-RAY structure of the mutant complex of human TNF (hTNF) with TNF receptor type II were used to analyze mechanisms of protein interactions and to identify key residues involved in the formation of complexes between hTNF and TNF-binding domains of cowpox virus (TNFBD-CPXV) and variola virus (TNFBD-VARV). Molecular dynamics simulation and MM-GBSA free energy calculations showed that hTNF binds with higher affinity to TNFBD-VARV in comparison with TNFBD-CPXV. The results of the calculations were confirmed by experimental binding affinity measurements using the SPR method. Amino acid substitution ASP63$\to$ASN63 was revealed to induce structural rearrangements favoring the interaction between TNFBD-VARV and hTNF. Additionally, free energy decomposition protocol of individual amino-acid residues allowed to identify key amino acids involved in the complex formation energy.
@article{MBB_2013_8_2_a4,
     author = {N. V. Ivanisenko and T. V. Tregubchak and O. V. Saik and V. A. Ivanisenko and S. N. Shchelkunov and N. A. Kolchanov},
     title = {Molecular {Mechanisms} of {Interaction} between {Human} {Tumor} {Necrosis} {Factor} and {CrmB} {TNF-binding} {Proteins} of {Cowpox} and {Variola} {Viruses}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {467--479},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a4/}
}
TY  - JOUR
AU  - N. V. Ivanisenko
AU  - T. V. Tregubchak
AU  - O. V. Saik
AU  - V. A. Ivanisenko
AU  - S. N. Shchelkunov
AU  - N. A. Kolchanov
TI  - Molecular Mechanisms of Interaction between Human Tumor Necrosis Factor and CrmB TNF-binding Proteins of Cowpox and Variola Viruses
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 467
EP  - 479
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a4/
LA  - ru
ID  - MBB_2013_8_2_a4
ER  - 
%0 Journal Article
%A N. V. Ivanisenko
%A T. V. Tregubchak
%A O. V. Saik
%A V. A. Ivanisenko
%A S. N. Shchelkunov
%A N. A. Kolchanov
%T Molecular Mechanisms of Interaction between Human Tumor Necrosis Factor and CrmB TNF-binding Proteins of Cowpox and Variola Viruses
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 467-479
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a4/
%G ru
%F MBB_2013_8_2_a4
N. V. Ivanisenko; T. V. Tregubchak; O. V. Saik; V. A. Ivanisenko; S. N. Shchelkunov; N. A. Kolchanov. Molecular Mechanisms of Interaction between Human Tumor Necrosis Factor and CrmB TNF-binding Proteins of Cowpox and Variola Viruses. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 467-479. http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a4/

[1] Hsia E. C., Ruley K. M., Rahman M. U., “Infliximab (Remicade\textregistered): from bench to clinical practice. A paradigm shift in rheumatology practice”, APLAR J. Rheumatol., 9 (2006), 107–118 | DOI

[2] Harriman G., Harper L. K., Schaible T. F., “Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment”, Ann. Rheum. Dis., 58:1 (1999), 161–164

[3] Mohler K. M., Torrance D. S., Smith C. A., Goodwin R. G., Stremler K. E., Fung V. P., Madani H., Widmer M. B., “Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists”, J. Immunol., 151:3 (1993), 1548–1561

[4] Weinblatt M. E., Keystone E. C., Furst D. E., Moreland L. W., Weisman M. H., Birbara C. A., Teoh L. A., Fischkoff S. A., Chartash E. K., “Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial”, Arthritis Rheum., 48:1 (2003), 35–45 | DOI

[5] Gartlehner G., Hansen R. A., Jonas B. L., Thieda P., Lohr K. N., “The comparative efficacy and safety of biologics for the treatment of rheumatoid arthritis: a systematic review and metaanalysis”, J. Rheumatol., 33:12 (2006), 2398–2408

[6] Kirou K., Mavragani C. P., “TNF antagonists in the management of early rheumatoid arthritis: An overview”, International Journal of Advances in Rheumatology, 4 (2006), 49–56

[7] Gómez-Reino J. J., Carmona L., Angel Descalzo M., “Biobadaser Group. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection”, Arthritis Rheum., 57:5 (2007), 756–761 | DOI

[8] Calabrese L. H., Zein N., Vassilopoulos D., “Safety of antitumour necrosis factor (anti-TNF) therapy in patients with chronic viral infections: hepatitis C, hepatitis B, and HIV infection”, Ann. Rheum. Dis., 63:2 (2004), 18–24

[9] Maini R. N., Taylor P. C., “Anti-cytokine therapy for rheumatoid arthritis”, Annu. Rev. Med., 51 (2000), 207–229 | DOI

[10] Blinov V. M., Shchelkunov S. N., Sandakhchiev L. S., “A possible molecular factor responsible for the generalization of smallpox infection”, Dokl. Akad. Nauk, 328:1 (1993), 109–111

[11] Shchelkunov S. N., Blinov V. M., Sandakhchiev L. S., “Genes of variola and vaccinia viruses necessary to overcome the host protective mechanisms”, FEBS Lett., 319:1–2 (1993), 80–83 | DOI

[12] Orlovskaya I. A., Tsyrendorzhiev D. D., Toporkova L. B., Kurilin V. V., Lopatnikova Yu. A., Vyazovaya E. A., Gileva I. P., Schelkunov S. N., Sennikov S. V., “Biologicheskie effekty rekombinantnogo belka virusa naturalnoi ospy, svyazyvayuschego faktor nekroza opukholei”, Meditsinskaya immunologiya, 14:1–2 (2012), 33–42

[13] Massova I., Kollman P. A., “Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies”, J. Am. Chem. Soc., 121 (1999), 8133–8143 | DOI

[14] Zoete V., Michielin O., “Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: application to the TCR-p-MHC complex”, Proteins: Struct. Funct. Bioinform., 67 (2007), 1026–1047 | DOI

[15] Zoete V., Meuwly M., Karplus M., “Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition”, Proteins: Struct. Funct. Bioinform., 61 (2005), 79–93 | DOI

[16] Gohlke H., Kiel C., Case D. A., “Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes”, J. Mol. Biol., 330 (2003), 891–913 | DOI

[17] Wang W., Kollman P. A., “Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model”, J. Mol. Biol., 303 (2000), 567–582 | DOI

[18] Pintus S. S., Ivanisenko N. V., Demenkov P. S., Ivanisenko T. V., Ramachandran S., Kolchanov N. A., Ivanisenko V. A., Journal of Biomolecular Structure and Dynamics, 31:1 (2013), 78–89 | DOI

[19] Gahoi Sh., Mandal R. Sh., Ivanisenko N., Shrivastava P., Jain S., Singh A. K., Raghunandanan M. V., Kanchan S., Taneja B., Mandal Ch., Ivanisenko V. A., Kumar A., Kumar R., “Open Source Drug Discovery Consortium, Srinivasan Ramachandran”, Journal of Biomolecular Structure and Dynamics, 31:1 (2013), 30–43 | DOI

[20] Chong L. T., Duan Y., Wang L., Massova I., Kollman P. A., “Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7”, Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 14330–14335 | DOI

[21] Tsui V., Case D. A., “Theory and applications of the generalized born solvation model in macromolecular simulations”, Biopolymers, 56 (2000), 275–291 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[22] Onufriev A., Bashford D., Case D. A., “Modification of the generalized Born model suitable for macromolecules”, J. Phys. Chem. B, 104 (2000), 3712–3720 | DOI

[23] Shchelkunov S. N., Uvarova E. A., Totmenin A. V., Safronov P. F., Sandakhchiev L. S., “Species-specific differences in the organization of the complement-binding protein of orthopoxviruses”, Dokl. Biochem. Biophys., 379 (2001), 257–261 | DOI

[24] Shchelkunov S. N., Totmenin A. V., Babkin I. V., Safronov P. F., Ryazankina O. I., Petrov N. A., Gutorov V. V., Uvarova E. A., Mikheev M. V., Sisler J. R., Esposito J. J., Jahrling P. B., Moss B., Sandakhchiev L. S., “Human monkeypox and smallpox viruses: genomic comparison”, FEBS Lett., 509:1 (2001), 66–70 | DOI

[25] Shchelkunov S. N., Totmenin A. V., Safronov P. F., Gutorov V. V., Ryazankina O. I., Petrov N. A., Babkin I. V., Uvarova E. A., Mikheev M. V., Sisler J. R., Esposito J. J., Jahrling P. B., Moss B., Sandakhchiev L. S., “Multiple genetic differences between the monkeypox and variola viruses”, Dokl. Biochem. Biophys., 384 (2002), 143–147 | DOI

[26] Gileva I. P., Nepomnyashchikh T. S., Antonets D. V., Lebedev L. R., Kochneva G. V., Grazhdantseva A. V., Shchelkunov S. N., “Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different”, Biochim. Biophys. Acta, 1764:11 (2006), 1710–1718 | DOI

[27] Alejo A., Ruiz-Arguello M. B., Ho Y., Smith V. P., Saraiva M., Alcami A., “A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus”, Proc. Natl. Acad. Sci. USA, 103:15 (2006), 5995–6000 | DOI

[28] Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M., “PROCHECK — a program to check the stereochemical quality of protein structures”, J. App. Cryst., 26 (1993), 283–291 | DOI

[29] Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M., “AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR”, J. Biomol. NMR, 8 (1996), 477–486 | DOI

[30] Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, J. Comput. Chem., 24 (2003), 1999–2012 | DOI

[31] Case D. A., Darden T. A., Cheatham III T. E., Simmerling C. L., Wang J., Duke R. E., Luo R., Walker R. C., Zhang W., Merz K. M., Roberts S., Hayik S., Roitberg A., Seabra G., Swails J., Götz A. W., Kolossvry I., Wong K. F., Paesani F., Vanicek J., Wolf R. M., Liu J., Wu X., Brozell S. R., Steinbrecher T., Gohlke H., Cai Q., Ye X., Wang J., Hsieh M.-J., Cui G., Roe D. R., Mathews D. H., Seetin M. G., Salomon-Ferrer R., Sagui C., Babin V., Luchko T., Gusarov S., Kovalenko A., Kollman P. A., AMBER 12, University of California, San Francisco, 2012

[32] Darden T., York D., Pedersen L., “Particle mesh Ewald: an $N \log(N)$ method for Ewald sums in large systems”, J. Chem. Phys., 98 (1993), 10089–10092 | DOI

[33] Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L., “A smooth particle mesh ewald potential”, J. Chem. Phys., 103 (1995), 8577–8592 | DOI

[34] Coleman T. G., Mesick H. C., Darby R. L., Ann. Biomed. Eng., 5 (1977), 322 | DOI

[35] Hou T., Wang J., Li Y., Wang W., “Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1: The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations”, J. Chem. Inf. Model., 51 (2011), 69–82 | DOI

[36] Miller B. R., Dwight McGee T., Swails J. M., Homeyer N., Gohlke H., Roitberg A. E., “MMPBSA.py: An Efficient Program for End-State Free Energy Calculations”, J. Chem. Theory Comput., 8:9 (2012), 3314–3321 | DOI

[37] Arnold K., Bordoli L., Kopp J., Schwede T., “The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling”, Bioinformatics, 22 (2006), 195–201 | DOI

[38] Kiefer F., Arnold K., Künzli M., Bordoli L., Schwede T., “The SWISS-MODEL Repository and associated resources”, Nucleic Acids Research, 37 (2009), D387–D392 | DOI

[39] Peitsch M. C., “Protein modeling by E-mail Bio/Technology”, Nature Biotechnology, 13 (1995), 658–660 | DOI

[40] Nepomniashchikh T. S., Antonets D. V., Lebedev L. R., Gileva I. P., Shchelkunov S. N., “Modeling spatial structures of variola and cowpox virus TNF-binding CrmB proteins bound to murine or human TNF”, Mol. Biol. (Mosk.), 44:6 (2010), 1054–1063

[41] Gileva I. P., Riazankin I. A., Nepomniashchikh T. S., Totmenin A. V., Maksiutov Z. A., Lebedev L. R., Afinogenova G. N., Pustoshiliva N. M., Shchelkunov S. N., “Expression of genes for orthopoxviral TNF-binding proteins and study resulted recombinant proteins”, Mol. Biol. (Mosk.), 39:2 (2005), 245–254 | DOI