Method of Search for Substrate Specificity Regions in Cellulase Class Enzymes Based on their Primary and Tertiary Structures
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 407-418.

Voir la notice de l'article provenant de la source Math-Net.Ru

In nature, the degradation of plant biomass, which mostly consists of plant cell walls, is implemented by microorganisms synthesizing cellulase class enzymes (CCEs). Cell walls fibers are composed of complex of polysaccharides, which is split by complicated CCEs. CCEs contain two types of domains. The first type is the catalytic domains that decompose polysaccharides. The second type is the binding domains with substrates (carbohydrate binding module, CBM). The ability of enzymes to decompose polysaccharides is due to the configuration of the catalytic site in the catalytic domain; in particular, the catalytic site should contain the complimentary binding site to the substrate. In this work, we have developed and tested a combined approach to identify CCEs’ binding sites which could make the contact zone with plant polysaccharide substrates. This approach was applied to the 90 proteins identified with cellulase activity based on data from M. Hess et al.. As a result, we have found two consensus sequences of CCEs’ binding sites which are complimentary with polysaccharide substrates, Carboxymethyl Cellulose (CMC) and Xylan. On the basis of the approach, we have developed a software that implements the basic stages of search and detection of binding sites. The developed method and the software can be used in the analysis of large groups of proteins with diverse substrate specificity to detect functional areas.
@article{MBB_2013_8_2_a2,
     author = {A. A. Igolkina and E. E. Andronov and Yu. B. Porozov},
     title = {Method of {Search} for {Substrate} {Specificity} {Regions} in {Cellulase} {Class} {Enzymes} {Based} on their {Primary} and {Tertiary} {Structures}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {407--418},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a2/}
}
TY  - JOUR
AU  - A. A. Igolkina
AU  - E. E. Andronov
AU  - Yu. B. Porozov
TI  - Method of Search for Substrate Specificity Regions in Cellulase Class Enzymes Based on their Primary and Tertiary Structures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 407
EP  - 418
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a2/
LA  - ru
ID  - MBB_2013_8_2_a2
ER  - 
%0 Journal Article
%A A. A. Igolkina
%A E. E. Andronov
%A Yu. B. Porozov
%T Method of Search for Substrate Specificity Regions in Cellulase Class Enzymes Based on their Primary and Tertiary Structures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 407-418
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a2/
%G ru
%F MBB_2013_8_2_a2
A. A. Igolkina; E. E. Andronov; Yu. B. Porozov. Method of Search for Substrate Specificity Regions in Cellulase Class Enzymes Based on their Primary and Tertiary Structures. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 407-418. http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a2/

[1] Woodcock S., Henrissat B., Sugiyama J., “Docking of Congo Red to the Surface of Crystalline Cellulose Using Molecular Mechanics”, Biopolymers, 36 (1995), 201–210 | DOI

[2] Hess M., Sczyrba A., Egan R., Kim T. W., Chokhawala H., Schroth G., Luo S., Clark D. S., Chen F., Zhang T. et al., “Metagenomic Discovery of Biomass-Degrading Genes and Genomes from Cow Rumen”, Science, 331 (2011), 463–467 | DOI

[3] Rubin E. M., “Genomics of cellulosic biofuels”, Nature, 454 (2008), 841–845 | DOI

[4] Himmel M. E., Ding S. Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., Foust T. D., “Biomass Recalcitrance: Engineering Plants and enzymesfor Biofuels Production”, Science, 315 (2007), 804–807 | DOI

[5] Samuel R., Pu Y., Foston M., Ragauskas A. J., “Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment”, Biofuels, 1 (2010), 85–90 | DOI

[6] Gilkes N. R., Kilburn D. G., Langsford M. L., Miller R. C. Jr., Wakarchuk W. W., Warren R. A. J., Whittle D. J., Wong W. K. R., “Isolation and Characterization of Escherichia coli Clones Expressing Cellulase Genes from Cellulomonas Jimi”, Journal of General Microbiology, 130 (1984), 1377–1384

[7] Gilkes N. R., Langsford M. L., Kilburn D. G., Miller R. C. Jr., Warren R. A., “Mode of Action and Substrate Specificities of Cellulases from Cloned Bacterial Genes”, The Journal of Biological Chemistry, 259:16 (1984), 10455–10459

[8] Abu Bakar N. K., Abd-Aziz S., Hassan M. A., Ghazali F. M., “Isolation and Selection of Appropriate Cellulolytic Mixed Microbial Cultures for Cellulases Production from OilPalm Empty Fruit Bunch”, Biotechnology, 9 (2010), 73–78 | DOI

[9] Koivula A., Reinikainen T., Ruohonen L., Valkeajärvi A., Claeyssens M., Teleman O., Kleywegt G. J., Szardenings M., Rouvinen J., Jones T. A., Teeri T. T., “The active site of Trichoderma reesei cellobiohydrolase. II: The role of tyrosine 169”, Protein Engineering, 9:8 (1996), 691–699 | DOI

[10] Knowless J., Lehtovaara P., Teeri T., “Cellulase families and their genes”, Trends in biotech., 5 (1987), 255–261 | DOI

[11] Bateman A., Coin L., Durbin R., Finn R. D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S., Sonnhammer E. L. L. et al., “The Pfam protein families database”, Nucleic Acids Research, 32 (2004), 138–141 | DOI

[12] Rice P., Longden I., Bleasby A., “EMBOSS: the European molecular biology open software suite”, Trends in Genetics, 16:6 (2000), 276–277 | DOI | MR

[13] Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R. et al., “Clustal W and Clustal X version 2.0”, Bioinformatics, 23:21 (2007), 2947–2948 | DOI

[14] Tamura K., Dudley J., Nei M., Kumar S., “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0”, Molecular Biology and Evolution, 24 (2007), 1596–1599 | DOI

[15] Pieper U., Eswar N., Braberg H., Madhusudhan M. S., Davis F. P., Stuart A. C., Mirkovic N., Rossi A., Marti-Renom M. A., Fiser A. et al., “MODBASE, a database of annotated comparative protein structure models, and associated resources”, Nucleic Acids Research, 32 (2004), D217–D222 | DOI

[16] Crooks G. E., Hon G., Chandonia J. M., Brenner S. E., “WebLogo: A Sequence Logo Generator”, Genome Research, 14 (2004), 1188–1190 | DOI