Theoretical and Experimental Investigations of DNA Open States
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 553-664.

Voir la notice de l'article provenant de la source Math-Net.Ru

This research is a review and assay of literature data on the properties of DNA open states. The states result from large fluctuations of a duplex and have a great influence on a wide range of biochemical processes, including electric charge transfer in DNA. A comparative analysis of kinetic and thermodynamic experimental data on DNA open states has been performed for a wide temperature range. Apparent contradictions between the data of different experiments have been explained. Based on differences in thermodynamic properties and other characteristics three different types of DNA open states have been identified; a modern definition of the term "open state" has been given. A brief review of simple mathematical models of DNA has been presented; in most of the models the state of every base pair is defined by one or two variables. The central problems of investigation of heterogeneous DNA within the approaches of the level considered are examined. The roles of every model group in experimental data interpretation are discussed. Special emphasis is placed on the study of transfer and localization of base pair vibration energy in mechanical models. These processes have been shown to play a key role in heterogeneous duplex dynamics, and their theoretical treatment is critically important for the development of modern molecular biology and biophysics. The key features of theoretical approaches, that enabled description of various experimental data, have been considered. The future development of the models has been desribed, some particular details of their optimization have been suggested; probable ways of improving some experimental techniques have been proposed.
@article{MBB_2013_8_2_a16,
     author = {A. S. Shigaev and O. A. Ponomarev and V. D. Lakhno},
     title = {Theoretical and {Experimental} {Investigations} of {DNA} {Open} {States}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {553--664},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a16/}
}
TY  - JOUR
AU  - A. S. Shigaev
AU  - O. A. Ponomarev
AU  - V. D. Lakhno
TI  - Theoretical and Experimental Investigations of DNA Open States
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 553
EP  - 664
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a16/
LA  - ru
ID  - MBB_2013_8_2_a16
ER  - 
%0 Journal Article
%A A. S. Shigaev
%A O. A. Ponomarev
%A V. D. Lakhno
%T Theoretical and Experimental Investigations of DNA Open States
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 553-664
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a16/
%G ru
%F MBB_2013_8_2_a16
A. S. Shigaev; O. A. Ponomarev; V. D. Lakhno. Theoretical and Experimental Investigations of DNA Open States. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 2, pp. 553-664. http://geodesic.mathdoc.fr/item/MBB_2013_8_2_a16/

[1] Alhambra C., Luque F. J., Gago F., Orozco M., “Ab Initio Study of Stacking Interactions in A- and B-DNA”, The Journal of Physical Chemistry B, 101 (1997), 3846–3853 | DOI

[2] Hobza P., Sponer J., “Structure, Energetics, and Dynamics of the Nucleic Acid Base Pairs: Nonempirical Ab Initio Calculations”, Chemical Reviews, 99 (1999), 3247–3276 | DOI

[3] Sponer J., Leszczynski J., Hobza P., “Nature of Nucleic Acid-Base Stacking: Nonempirical ab Initio and Empirical Potential Characterization of 10 Stacked Base Dimers. Comparison of Stacked and H-Bonded Base Pairs”, The Journal of Physical Chemistry, 100 (1996), 5590–5596 | DOI

[4] Tewari A. K., Dubey R., “Emerging trends in molecular recognition: utility of weak aromatic interactions”, Bioorganic Medicinal Chemistry, 16 (2008), 126–143 | DOI

[5] Watson D. G., Sutor D. J., Tollin P., “The crystal structure of deoxyadenosine monohydrate”, Acta Crystallographica, 19 (1965), 111–124 | DOI

[6] Kraut J., Jensen L. H., “Refinement of the crystal structure of adenosine-5'-phosphate”, Acta Crystallographica, 16 (1963), 79–88 | DOI

[7] Gago F., “Stacking Interactions and Intercalative DNA Binding”, Methods, 14 (1998), 277–292 | DOI

[8] Sponer J., Leszczynski J., Hobza P., “Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases”, Biopolymers, 61 (2001/2002), 3–31 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[9] Cerny J., Hobza P., “Non-covalent interactions in biomacromolecules”, Physical Chemistry Chemical Physics, 9 (2007), 5291–5303 | DOI

[10] Nelson D., Koks M., Osnovy biokhimii Lenindzhera, Per. s angl., v 3 t., v. 1, BINOM. Laboratoriya znanii, M., 2011, 402 pp.

[11] Benham C. J., Mielke S. P., “DNA mechanics”, Annual Review of Biomedical Engineering, 7 (2005), 21–53 | DOI

[12] Vedenov A. A., Dykhne A. M., Frank-Kamenetskii M. D., “Perekhod spiral-klubok v DNK”, Uspekhi fizicheskikh nauk, 105:3 (1971), 479–519 | DOI

[13] Peyrard M., “Nonlinear dynamics and statistical physics of DNA”, Nonlinearity, 17 (2004), R1–R40 | DOI | MR | Zbl

[14] Cloutier T., Widom J., “Spontaneous Sharp Bending of Double-Stranded DNA”, Molecular Cell, 14 (2004), 355–362 | DOI

[15] Yan J., Marko J. F., “Localized Single-Stranded Bubble Mechanism for Cyclization of Short Double Helix DNA”, Physical Review Letters, 93 (2004), 108108 | DOI

[16] Cloutier T. E., Widom J., “DNA twisting flexibility and the formation of sharply looped protein-DNA complexes”, PNAS USA, 102 (2005), 3645–3650 | DOI

[17] Du Q., Smith C., Shiffeldrim N., Vologodskaia M., Vologodskii A., “Cyclization of short DNA fragments and bending fluctuations of the double helix”, PNAS USA, 102 (2005), 5397–5402 | DOI

[18] Feklistov A., Darst S. A., “Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit”, Cell, 147 (2011), 1257–1269 | DOI

[19] Liu X., Bushnell D. A., Kornberg R. D., “Lock and key to transcription: sigma-DNA interaction”, Cell, 147 (2011), 1218–1219 | DOI

[20] Eley D. D., Spivey D. I., “Semiconductivity of organic substances. 9: Nucleic acid in the dry state”, Transactions of the Faraday Society, 58 (1962), 411–415 | DOI

[21] Armitage B., “Photocleavage of Nucleic Acids”, Chemical Reviews, 98 (1998), 1171–1200 | DOI | MR

[22] Kino K., Sugiyama H., “Possible cause of G-C$\to$C-G transversion mutation by guanine oxidation product, imidazolone”, Chemistry Biology, 8 (2001), 369–378 | DOI

[23] Wagenknecht H.-A., “Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics”, Natural Product Reports, 23 (2006), 973–1006 | DOI

[24] Kawanishi S., Hiraku Y., Oikawa S., “Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging”, Mutation Research, 488 (2001), 65–76 | DOI

[25] Genereux J. C., Boal A. K., Barton J. K., “DNA-mediated Charge Transport in Redox Sensing and Signaling”, Journal of American Chemical Society, 132 (2010), 891–905 | DOI

[26] Sontz P. A., Mui T. P., Fuss J. O., Tainer J. A., Barton J. K., “DNA charge transport as a first step in coordinating the detection of lesions by repair proteins”, PNAS USA, 109 (2012), 1856–1861 | DOI

[27] Sontz P. A., Muren N. B., Barton J. K., “DNA Charge Transport for Sensing and Signaling”, Accounts of Chemical Research, 45 (2012), 1792–1800 | DOI

[28] Folta-Stogniew E., Russu I. M., “Sequence dependence of base-pair opening in a DNA dodecamer containing the CACA/GTGT sequence motif”, Biochemistry, 33 (1994), 11016–11024 | DOI

[29] Choi C. H., Kalosakas G., Rasmussen K. O., Hiromura M., Bishop A. R., Usheva A., “DNA dynamically directs its own transcription initiation”, Nucleic Acids Research, 32 (2004), 1584–1590 | DOI

[30] Kalosakas G., Rasmussen K. O., Bishop A. R., Choi C. H., Usheva A., “Sequence-specific thermal fluctuations identify start sites for DNA transcription”, Europhysics Letters, 68 (2004), 127–133 | DOI

[31] Lakhno V. D., “DNA Nanobioelectronics”, International Journal of Quantum Chemistry, 108 (2008), 1970–1981 | DOI

[32] Triberis G. P., Dimakogianni M., “DNA in the material world: electrical properties and nano-applications”, Recent Patents on Nanotechnology, 3 (2009), 135–153 | DOI

[33] Hatfield G. W., Benham C. J., “DNA topology-mediated control of global gene expression in Escherichia coli”, Annual Review of Genetics, 36 (2002), 175–203 | DOI

[34] Mielke S. P., Gronbech-Jensen N. G., Krishnan V. V., Fink W. H., Benham C. J., “Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA”, The Journal of chemical physics, 123 (2005), 124911 | DOI

[35] Zhabinskaya D., Benham C. J., “Theoretical Analysis of the Stress Induced B-Z Transition in Superhelical DNA”, PLoS Computational Biology, 7 (2011), e1001051 | DOI | MR

[36] Watson J. D., Crick F. H., “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid”, Nature, 171 (1953), 737–738 | DOI

[37] Zimm B. H., Kallenbach N. R., “Selected Aspects of the Physical Chemistry of Polynucleotides and Nucleic Acids”, Annual Review of Physical Chemistry, 13 (1962), 171–194 | DOI

[38] Marmur J., Rownd R., Schildkraut C. L., “Denaturation and Renaturation of Deoxyribonucleic Acids”, Progress in Nucleic Acid Research and Molecular Biology, 1 (1963), 231–300 | DOI

[39] Felsenfeld G., Miles H. T., “The Physical and Chemical Properties of Nucleic Acids”, Annual Review of Biochemistry, 36 (1967), 407–448 | DOI

[40] Thomas R., “Recherches sur la d'enaturation des acides desoxyribonucleiques”, Biochimica et Biophysica Acta, 14 (1954), 231–240 | DOI

[41] Rice S. A., Doty P., “The Thermal Denaturation of Deoxyribose Nucleic Acid”, Journal of American Chemical Society, 79 (1957), 3937–3947 | DOI

[42] Zamenhof S., Alexander H. E., Leidy G., “Studies on the chemistry of the transforming activity. I: Resistance to physical and and chemical agents”, The Journal of Experimental Medicine, 98 (1953), 373–397 | DOI

[43] Bloomfield V. A., Crothers D. M., Tinoco I. Jr., Physical Chemistry of Nucleic acids, Harper Row, New York, 1974, 133 pp.

[44] Tinoco I. Jr., “Hypochromism in Polynucleotides”, Journal of American Chemical Society, 82 (1960), 4785–4790 ; Erratum, Journal of American Chemical Society, 84 (1961), 5047 | DOI | DOI

[45] Rhodes W., “Hypochromism and Other Spectral Properties of Helical Polynucleotides”, Journal of American Chemical Society, 83 (1961), 3609–3617 | DOI

[46] De Voe H., “Optical Properties of Molecular Aggregates. I: Classical Model of Electronic Absorption and Refraction”, The Journal of chemical physics, 41:2 (1964), 393–400 | DOI

[47] Rhodes W., Chase M., “Generalized Susceptibility Theory. I: Theories of Hypochromism”, Reviews of Modern Physics, 39 (1967), 348–361 | DOI

[48] Bullough R. K., “Complex Refractive Index and a Two-Band Model in the Theory of Hypochromism”, The Journal of chemical physics, 48 (1968), 3712–3722 | DOI

[49] De Voe H., “The theory of hypochromism of biopolymers: calculated spectra for DNA”, Annals of the New York Academy of Sciences, 158 (1969), 298–307 | DOI

[50] Brown E., Pysh E. S., “Base Composition Dependence of DNA Hypochromism”, The Journal of Chemical Physics, 56 (1972), 31–37 | DOI

[51] Volkov S. N., “Some aspects of the DNA hypochromic effect theory”, International Journal of Quantum Chemistry, 16:1 (1979), 119–132 | DOI

[52] Russell A. P., Holleman D. S., “The thermal denaturation of DNA: average length and composition of denatured areas”, Nucleic Acids Research, 1 (1974), 959–978 | DOI

[53] Wartell R. M., Benight A. S., “Thermal denaturation of DNA molecules: A comparison of theory with experiment”, Physics Reports, 126 (1985), 67–107 | DOI

[54] Montrichok A., Gruner G., Zocchi G., “Trapping intermediates in the melting transition of DNA oligomers”, Europhysics Letters, 62 (2003), 452–458 | DOI

[55] Zeng Y., Montrichok A., Zocchi G., “Length and statistical weight of bubbles in DNA melting”, Physical Review Letters, 91 (2003), 148101 | DOI

[56] Marmur J., Doty P., “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature”, Journal of Molecular Biology, 5:1 (1962), 109–118 | DOI

[57] Nishigaki K., Husimi Y., Masuda M., Kaneko K., Tanaka T., “Strand dissociation and cooperative melting of double-stranded DNAs detected by denaturant gradient gel electrophoresis”, The Journal of Biochemistry, 95 (1984), 627–635

[58] Fodde R., Losekoot M., “Mutation detection by denaturing gradient gel electrophoresis (DGGE)”, Human mutation, 3 (1994), 83–94 | DOI

[59] Wada A., Yabuki S., Husimi Y., “Fine structure in the thermal denaturation of DNA: high temperature-resolution spectrophotometric studies”, CRC critical reviews in biochemistry, 9 (1980), 87–144 | DOI

[60] Lazurkin Yu. S., Frank-Kamenetskii M. D., Trifonov E. N., “Melting of DNA: its study and application as a research method”, Biopolymers, 9 (1970), 1253–1306 | DOI

[61] Gotoh O., “Prediction of melting profiles and local helix stability for sequenced DNA”, Advances in Biophysics, 16 (1983), 1–52 | DOI

[62] Ivanov V., Zeng Y., Zocchi G., “Statistical mechanics of base stacking and pairing in DNA melting”, Physical Review E, 70 (2004), 051907 | DOI

[63] Rice S. A., Wada A., “On a model of the Helix-coil Transition in Macromolecules, II”, The Journal of Chemical Physics, 29 (1958), 233–243 | DOI

[64] Hill T. L., “Generalization of the One-Dimensional Ising Model Applicable to Helix Transitions in Nucleic Acids and Proteins”, The Journal of Chemical Physics, 30 (1959), 383–387 | DOI

[65] Zimm B. H., “Theory of “Melting” of the Helical Form in Double Chains of the DNA Type”, The Journal of Chemical Physics, 33 (1959), 1349–1356 | DOI

[66] Newell G. F., Montroll E. W., “On the Theory of the Ising Model of Ferromagnetism”, Reviews of Modern Physics, 25 (1953), 353–389 | DOI | MR | Zbl

[67] Magee W. S. Jr., Gibbs J. H., Zimm B. H., “Theory of helix-coil transitions involving complementary poly- and oligo-nucleotides. I: The complete binding case”, Biopolymers, 1:2 (1963), 133–143 | DOI

[68] Magee W. S., Gibbs J. H., Newell G. F., “Statistical Thermodynamic Theory for Helix-Coil Transitions Involving Poly- and Oligonucleotides. II: The Case of Partial Binding”, The Journal of Chemical Physics, 43 (1965), 2115–2123 | DOI

[69] Schildkraut C., Lifson S., “Dependence of the melting temperature of DNA on salt concentration”, Biopolymers, 3:2 (1965), 195–208 | DOI

[70] Applequist J., Damle V., “Theory of the Effects of Concentration and Chain Length on Helix-Coil Equilibria in Two-Stranded Nucleic Acids”, The Journal of Chemical Physics, 39 (1963), 2719–2721 | DOI

[71] Poland D., Scheraga H. R., Theory of helix-coil transitions in biopolymers: statistical mechanical theory of order-disorder transitions in biological macromolecules, Acad. Press, New York, 1970, 797 pp.

[72] Crothers D. M., Kallenbach N. R., “On the Helix-Coil Transition in Heterogeneous Polymers”, The Journal of Chemical Physics, 45 (1966), 917–927 | DOI

[73] Lehman G. W., McTague J. P., “Melting of DNA”, The Journal of Chemical Physics, 49 (1968), 3170–3179 | DOI

[74] Brahms J., Maurizot J. C., Michelson A. M., “Conformational stability of dinucleotides in solution”, Journal of Molecular Biology, 25 (1967), 481–495 | DOI

[75] Davis R. C., Tinoco I. Jr., “Temperature-dependent properties of dinucleoside phosphates”, Biopolymers, 6 (1968), 223–242 | DOI

[76] Inman R. B., Valdwin R. L., “Helix-Random Coil Transitions in DNA Homopolymer Pairs”, Journal of Molecular Biology, 8 (1964), 452–469 | DOI

[77] Shamberlin M. J., “Comparative properties of DNA, RNA, and hybrid homopolymer pairs”, Federation Proceedings, 24 (1965), 1446–1457

[78] Applequist J., “True Phase Transitions in Macromolecules of the DNA Type”, The Journal of Chemical Physics, 45 (1966), 3459–3461 | DOI

[79] Applequist J., “Higher-Order Phase Transitions in Two-Stranded Macromolecules”, The Journal of Chemical Physics, 50 (1969), 600–609 | DOI

[80] Landau L. D., Lifschitz E. M., Statistical Physics, Pergamon Press, Oxford, 1980, 387 pp. | MR

[81] Mermin N., Wagner H., “Absence of ferro-magnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models”, Physical Review Letters, 17 (1966), 1133–1136 | DOI

[82] Kac M., Uhlenbeck G. E., Hemmer P. C., “On the Van der Waals Theory of the Vapor-Liquid Equilibrium. I: Discussion of a One-Dimensional Model”, Journal of Mathematical Physics, 4 (1963), 216–228 | DOI | MR | Zbl

[83] Poland D., Scheraga H. A., “Phase transitions in one dimension and the helix-coil transition in polyamino acids”, The Journal of Chemical Physics, 45 (1966), 1456–1463 | DOI

[84] Poland D., Scheraga H. A., “Occurrence of a phase transition in nucleic acid models”, The Journal of Chemical Physics, 45 (1966), 1464–1469 | DOI

[85] Flory P. J., “Theory of Elastic Mechanisms in Fibrous Proteins”, Journal of American Chemical Society, 78 (1956), 5222–5235 | DOI

[86] Fisher M. E., “Effect of Excluded Volume on Phase Transitions in Biopolymers”, The Journal of Chemical Physics, 45 (1966), 1469–1473 | DOI

[87] Lifshits I. M., Grosberg A. Yu., Khokhlov A. R., “Struktura polimernoi globuly, sformirovannoi nasyschayuschimisya svyazyami”, ZhETF, 71:4 (1976), 1634–1643

[88] Lifshits I. M., Grosberg A. Yu., Khokhlov A. R., “Ob'emnye vzaimodeistviya v statisticheskoi fizike polimernoi makromolekuly”, Uspekhi fizicheskikh nauk, 127:3 (1979), 353–389 | DOI

[89] Kuznetsov D. V., Khokhlov A. R., “Ob anomalnom perekhode klubok-globula v geteropolimernoi makromolekule”, Vysokomolekulyarnye soedineniya. Seriya B, 23B:1 (1981), 59–61

[90] Grosberg A. Yu., Khokhlov A. R., “Perekhody tipa klubok-globula v polimernykh sistemakh”, Problemy fiziki tverdogo tela, kurs lektsii, ed. Prokhorov A. M., Mir, M., 1984, 330–353

[91] Grosberg A. Yu., Khokhlov A. R., “Fazovye perekhody v polimernykh i biopolimernykh sistemakh”, Uspekhi fizicheskikh nauk, 149:4 (1986), 721–726

[92] Grosberg A. Yu., Khokhlov A. R., “After-Action of the Ideas of I. M. Lifshitz in Polymer and Biopolymer Physics”, Advances in Polymer Science, 196, Springer-Verlag, Berlin, 2006, 189–210 | DOI

[93] Takahashi M., Yoshikawa K., Vasilevskaya V. V., Khokhlov A. R., “Discrete coil-globule transition of single duplex DNAs induced by polyamines”, The Journal of Physical Chemistry B, 101 (1997), 9396–9401 | DOI

[94] Mukherji S., Bhattacharjee S. M., “Directed polymers with random interaction: An exactly solvable case”, Physical Review E, 48 (1993), 3483–3496 | DOI | MR

[95] Bhattacharjee S. M., Mukherji S., “Directed polymers with random interaction: Marginal relevance and novel criticality”, Physical Review Letters, 70 (1993), 49–52 | DOI

[96] Causo M. S., Coluzzi B., Grassberger P., “Simple model for the DNA denaturation transition”, Physical Review E, 62 (2000), 3958–3973 | DOI

[97] Kafri Y., Mukamel D., Peliti L., Why is the DNA Denaturation Transition First Order?, Physical Review Letters, 85 (2000), 4988–4991 | DOI

[98] Duplantier B., “Polymer Network of fixed topology: renormalization, exact critical exponent $\gamma$ in two dimensions, and $d=4-\varepsilon$”, Physical Review Letters, 57 (1986), 941–944 | DOI | MR

[99] Duplantier B., “Statistical Mechanics of Polymer Networks”, Journal of Statistical Physics, 54 (1989), 581–680 | DOI | MR

[100] Schafer L., von Ferber C., Lehr U., Duplantier B., “Renormalization of polymer networks and stars”, Nuclear Physics B, 374 (1992), 473–495 | DOI | MR | Zbl

[101] Garel T., Monthus C., Orland H., “A simple model for DNA denaturation”, Europhysics Letters, 55 (2001), 132–138 | DOI

[102] Carlon E., Orlandini E., Stella A. L., “Roles of Stiffness and Excluded Volume in DNA Denaturation”, Physical Review Letters, 88 (2002), 198101 | DOI

[103] Baiesi M., Carlon E., Stella A. L., “Scaling in DNA unzipping models: Denaturated loops and end segments as branches of a block copolymer network”, Physical Review E, 66 (2002), 021804 | DOI

[104] Blossey R., Carlon E., “Reparametrizing the loop entropy weights: Effect on DNA melting curves”, Physical Review E, 68 (2003), 061911 | DOI

[105] Baiesi M., Carlon E., Kafri Y., Mukamel D., Orlandini E., Stella A. L., “Interstrand distance distribution of DNA near melting”, Physical Review E, 67 (2003), 021911 | DOI

[106] Garel T., Monthus C., “Numerical study of the disordered Poland–Scheraga model of DNA denaturation”, Journal of Statistical Mechanics: Theory and Experiment, 2005 (2005), P06004 | DOI | MR

[107] Coluzzi B., “Numerical study of a disordered model for DNA denaturation transition”, Physical Review E, 73 (2006), 011911 | DOI

[108] Coluzzi B., Yeramian E., “Numerical evidence for relevance of disorder in a Poland–Scheraga DNA denaturation model with self-avoidance: scaling behavior of average quantities”, The European Physical Journal B, 56 (2007), 349–365 | DOI

[109] Bar A., Kafri Y., Mukamel D., “Loop Dynamics in DNA Denaturation”, Physical Review Letters, 98 (2007), 038103 | DOI

[110] Kunz H., Livi R., Suto A., “The structure factor and dynamics of the helix-coil transition”, Journal of Statistical Mechanics: Theory and Experiment, 2007 (2007), P06004 | DOI

[111] Bandyopadhyay M., Gupta S., Segal D., “DNA breathing dynamics: Analytic results for distribution functions of relevant Brownian functionals”, Physical Review E, 83 (2011), 031905 | DOI

[112] Inman R. B., “A denaturation map of the lambda phage DNA molecule determined by electron microscopy”, Journal of Molecular Biology, 18 (1966), 464–476 | DOI

[113] Hirschman S. Z., Gellert M., Falkow S., Felsenfeld G., “Spectral analysis of the intramolecular heterogeneity of lambda DNA”, Journal of Molecular Biology, 28 (1967), 469–477 | DOI

[114] Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B., “Nucleotide sequence of bacteriophage lambda DNA”, Journal of Molecular Biology, 162 (1982), 729–773 | DOI

[115] Falkow S., Cowie D. B., “Intramolecular heterogeneity of the deoxyribonucleic acid of temperate bacteriophages”, Journal of Bacteriology, 96 (1968), 777–784

[116] Hanlon S., Johnson R. S., Wolf B., Chan A., “Mixed Conformations of Deoxyribonucleic Acid in Chromatin: A Preliminary Report”, PNAS USA, 69 (1972), 3263–3267 | DOI

[117] Tashiro T., Kurokawa M., “A Contribution of Nonhistone Proteins to the Conformation of Chromatin”, European Journal of Biochemistry, 60 (1975), 569–577 | DOI

[118] Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. R., “DNA denaturation in situ. Effect of divalent cations and alcohols”, The Journal of Cell Biology, 68 (1976), 1–10 | DOI

[119] Defert N., Kitzist A., Kruht J., Brahms S., Brahms J., “Effect of non-histone proteins on thermal transition of chromatin and of DNA”, Nucleic Acids Research, 4 (1977), 2293–2306 | DOI

[120] Li H. J., Brand B., Rotter A., “Thermal denaturation of calf thymus DNA: existence of a GC-richer fraction”, Nucleic Acids Research, 1 (1974), 257–265 | DOI

[121] Fonty G., Crouse E. J., Stutz E., Bernard G., “The Mitochondrial Genome of Euglena gracilis”, European Journal of Biochemistry, 54 (1975), 367–372 | DOI

[122] Schmitt J. M., Bonhert H.-J., Gordon K. H. J., Herrmann R., Bernardi G., Crouse E. J., “Compositional Heterogeneity of the Chloroplast DNAs from Euglena gracilis and Spinacia oleracea”, European Journal of Biochemistry, 117 (1981), 375–382 | DOI

[123] Lyon E., “Mutation detection using fluorescent hybridization probes and melting curve analysis”, Expert Review of Molecular Diagnostics, 1 (2001), 92–101 | DOI

[124] Ruskova L., Raclavsky V., “The potential of high resolution melting analysis (HRMA) to streamline, facilitate and enrich routine diagnostics in medical microbiology”, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 155, 2011, 239–252 | DOI

[125] Li B. S., Wang X. Y., Ma F. L., Jiang B., Song X. X., Xu A. G., “Is high resolution melting analysis (HRMA) accurate for detection of human disease-associated mutations? A meta analysis”, PLoS One, 6 (2011), e28078 | DOI

[126] Vossen R. H., Aten E., Roos A., den Dunnen J. T., “High-resolution melting analysis (HRMA): more than just sequence variant screening”, Human Mutation, 30 (2009), 860–866 | DOI

[127] Ghorashi S. A., Noormohammadi A. H., Markham P. F., “Differentiation of Mycoplasma gallisepticum strains using PCR and high-resolution melting curve analysis”, Microbiology, 156 (2010), 1019–1029 | DOI

[128] Lyamichev V. I., Panyutin I. G., Cherny D. I., Lyubchenko Yu. L., “Localization of low-melting regions in phage T7 DNA”, Nucleic Acids Research, 11 (1983), 2165–2176 | DOI

[129] Wartell R. M., Benight A. S., “Fluctuational Base-Pair Opening in DNA at Temperatures Below the Helix-Coil Transition Region”, Biopolymers, 21 (1982), 2069–2081 | DOI

[130] Steger G., “Thermal denaturation of double-stranded nucleic acids: prediction of temperatures critical for gradient gel electrophoresis and polymerase chain reaction”, Nucleic Acids Research, 22 (1994), 2760–2768 | DOI

[131] Blake R. D., Bizzaro J. W., Blake J. D., Day G. R., Delcourt S. G., Knowles J., Marx K. A., Santa-Lucia J. Jr., “Statistical mechanical simulation of polymeric DNA melting with MELTSIM”, Bioinformatics, 15 (1999), 370–375 | DOI

[132] Rasmussen J. P., Saint C. P., Monis P. T., “Use of DNA melting simulation software for in silico diagnostic assay design: targeting regions with complex melting curves and confirmation by real-time PCR using intercalating dyes”, BMC Bioinformatics, 8 (2007), 107 | DOI

[133] Yeramian E., Jones L., “GeneFizz: A web tool to compare genetic (coding/non-coding) and physical (helix/coil) segmentations of DNA sequences. Gene discovery and evolutionary perspectives”, Nucleic Acids Research, 31 (2003), 3843–3849 | DOI

[134] Leber M., Kaderali L., Schonhuth A., Schrader R., “A fractional programming approach to efficient DNA melting temperature calculation”, Bioinformatics, 21 (2005), 2375–2382 | DOI

[135] Yeramian E., “Genes and the physics of the DNA double-helix”, Gene, 255 (2000), 139–150 | DOI

[136] Yeramian E., “The physics of DNA and the annotation of the Plasmodium falciparum genome”, Gene, 255 (2000), 151–168 | DOI

[137] Gaeta G., Reiss C., Peyrard M., Dauxois T., “Simple models of non-linear DNA dynamics”, La Rivista del Nuovo Cimento, Ser. 3, 17:4 (1994), 1–48 | DOI

[138] Yakushevich L. V., Nonlinear Physics of DNA, 2nd Edition, Wiley, New York, 2004, 207 pp.

[139] Mandal C., Kallenbach N. R., Englander S. W., “Base-pair opening and closing reactions in the double helix: A stopped-flow hydrogen exchange study in poly(rA):poly(rU)”, Journal of Molecular Biology, 135 (1979), 391–411 | DOI

[140] Englander S. W., Kallenbach N. R., Heeger A. J., Krumhansl J. A., Litwin S., “Nature of the open state in long polynucleotide double helices: possibility of soliton excitations”, PNAS USA, 77 (1980), 7222–7226 | DOI

[141] Yomosa S., “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Physical Review A, 27 (1983), 2120–2125 | DOI | MR

[142] Yomosa S., “Solitary excitations in deoxyribonucleic acid (DNA) double helices”, Physical Review A, 30 (1984), 474–480 | DOI | MR

[143] Teitelbaum H., Englander S. W., “Open states in native polynucleotides. I: Hydrogen-exchange study of adenine-containing double helices”, Journal of Molecular Biology, 92 (1975), 55–78 | DOI

[144] Teitelbaum H., Englander S. W., “Open states in native polynucleotides. II: Hydrogen-exchange study of cytosine-containing double helices”, Journal of Molecular Biology, 92 (1975), 79–92 | DOI

[145] Nakanishi M., Tsuboi M., “Two channels of hydrogen exchange in a double-helical nucleic acid”, Journal of Molecular Biology, 124 (1978), 61–71 | DOI

[146] Takeno S., Homma S., “Topological Solitons and Modulated Structure of Bases in DNA Double Helices — A Dynamic Plane Base-Rotator Model”, Progress of Theoretical Physics, 70 (1983), 308–311 | DOI

[147] Homma S., Takeno S., “A Coupled Base-Rotator Model for Structure and Dynamics of DNA — Local Fluctuations in Helical Twist Angles and Topological Solitons”, Progress of Theoretical Physics, 72 (1984), 679–693 | DOI | MR | Zbl

[148] Zhang C.-T., “Soliton excitations in deoxyribonucleic acid (DNA) double helices”, Physical Review A, 35 (1987), 886–891 | DOI | MR

[149] Gao Y., Prohofsky E. W., “A modified self-consistent phonon theory of hydrogen bond melting”, The Journal of Chemical Physics, 80 (1984), 2242 | DOI

[150] Gao Y., Devi-Prasad K. V., Prohofsky E. W., “A self-consistent microscopic theory of hydrogen bond melting with application to poly(dG)-poly(dC)”, The Journal of Chemical Physics, 80 (1984), 6291 | DOI

[151] Prohofsky E. W., “Solitons hiding in DNA and their possible significance in RNA transcription”, Physical Review A, 38 (1988), 1538–1541 | DOI

[152] Peyrard M., Bishop A. R., “Statistical Mechanics of a Nonlinear Model for DNA Denaturation”, Physical Review Letters, 62 (1989), 2755–2758 | DOI

[153] Dauxois T., Peyrard M., Bishop A. R., “Dynamics and thermodynamics of a nonlinear model for DNA denaturation”, Physical Review E, 47 (1993), 684–695 | DOI

[154] Dauxois T., Peyrard M., Bishop A. R., “Entropy-driven DNA denaturation”, Physical Review E, 47 (1993), R44–R47 | DOI

[155] Cule D., Hwa T., “Denaturation of Heterogeneous DNA”, Physical Review Letters, 79 (1997), 2375–2378 | DOI

[156] Dauxois T., Peyrard M., “Entropy-driven transition in a one-dimensional system”, Physical Review E, 51 (1995), 4027–4040 | DOI

[157] Van Zandt L. L., “DNA solitons with realistic parameter values”, Physical Review A, 40 (1989), 6134–6137 | DOI

[158] Techera M., Daemen L. L., Prohofsky E. W., “Comment on “DNA solitons with realistic parameters””, Physical Review A, 42 (1990), 5033–5035 | DOI

[159] Van Zandt L. L., “Reply to “Comment on `DNA solitons with realistic parameters””, Physical Review A, 42 (1990), 5036–5039 | DOI

[160] Drigo-Filho E., Ruggiero J. R., “Parameters describing the H-bond in DNA”, Physical Review A, 44 (1991), 8435–8436 | DOI

[161] Banavali N. K., MacKerell A. D. Jr., “Free energy and structural pathways of base flipping in a DNA GCGC containing sequence”, Journal of Molecular Biology, 319 (2002), 141–160 | DOI

[162] Giudice E., Varnai P., Lavery R., “Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations”, Nucleic Acids Research, 31 (2003), 1434–1443 | DOI

[163] Bouvier B., Grubmuller H., “A Molecular Dynamics Study of Slow Base Flipping in DNA using Conformational Flooding”, Biophysical Journal, 93 (2007), 770–786 | DOI

[164] Yakushevich L. V., “Nonlinear DNA dynamics: a new model”, Physics Letters A, 136 (1989), 413–417 | DOI

[165] Yakushevich L. V., Is DNA a nonlinear dynamical system where solitary conformational waves are possible?, Journal of Biosciences, 26 (2001), 305–313 | DOI

[166] Yakushevich L. V., “Modeling the Internal Mobility of the Molecule of DNA”, International Journal of Quantum Chemistry, 88 (2002), 570–578 | DOI

[167] Yakushevich L. V., Savin A. V., Manevitch L. I., “Nonlinear dynamics of topological solitons in DNA”, Physical Review E, 66 (2002), 016614 | DOI | MR

[168] Gaeta G., “Solitons in the Yakushevich model of DNA beyond the contact approximation”, Physical Review E, 74 (2006), 021921 | DOI | MR

[169] Cadoni M., De Leo R., Gaeta G., “Composite model for DNA torsion dynamics”, Physical Review E, 75 (2007), 021919 | DOI | MR

[170] Daniel M., Vasumathi V., “Solitonlike base pair opening in a helicoidal DNA: An analogy with a helimagnet and a cholesteric liquid crystal”, Physical Review E, 79 (2009), 012901 | DOI

[171] Cadoni M., De Leo R., Demelio S., “Soliton propagation in homogeneous and non-homogeneous models for DNA torsion dynamics”, Journal of Nonlinear Mathematical Physics, 18 (2011), 287–319 | DOI | MR

[172] Yakushevich L. V., Ryasik A. A., “Dinamicheskie kharakteristiki kinkov i antikinkov DNK”, Kompyuternye issledovaniya i modelirovanie, 4:1 (2012), 209–217

[173] Barbi M., Cocco S., Peyrard M., “Helicoidal model for DNA opening”, Physics Letters A, 253 (1999), 358–369 | DOI

[174] Barbi M., Cocco S., Peyrard M., Ruffo S., “A Twist Opening Model for DNA”, Journal of Biological Physics, 24 (1999), 97–114 | DOI

[175] Campa A., “Bubble propagation in a helicoidal molecular chain”, Physical Review E, 63 (2001), 021901 | DOI

[176] Cocco S., Monasson R., “Statistical Mechanics of Torque Induced Denaturation of DNA”, Physical Review Letters, 83 (1999), 5178–5181 | DOI

[177] Cocco S., Monasson R., “Theoretical study of collective modes in DNA at ambient temperature”, The Journal of Chemical Physics, 112 (2000), 10017–10033 | DOI

[178] Cocco S., Monasson R., Marko J. F., “Force and kinetic barriers to initiation of DNA unzipping”, Physical Review E, 65 (2002), 041907 | DOI

[179] Barbi M., Lepri S., Peyrard M., Theodorakopoulos N., “Thermal denaturation of a helicoidal DNA model”, Physical Review E, 68 (2003), 061909 | DOI

[180] Cocco S., Monasson R., Marko J. F., “Force and kinetic barriers to unzipping of the DNA double helix”, PNAS USA, 98 (2001), 8608–8613 | DOI

[181] Drukker K., Wu G., Schatz G. C., “Model simulations of DNA denaturation dynamics”, Journal of Chemical Physics, 114 (2001), 579–590 | DOI

[182] Calvo G. F., Alvarez-Estrada R. F., “Three-dimensional models for homogeneous DNA near denaturation”, Journal of Physics: Condensed Matter, 17 (2005), 7755–7781 | DOI

[183] Hien D. L., Nhan N. T., Thanh Ngo V., Viet N. A., “Simple combined model for nonlinear excitations in DNA”, Physical Review E, 76 (2007), 021921 | DOI

[184] Goldman C., Olson W. K., “DNA denaturation as a problem of translational-symmetry restoration”, Physical Review E, 48 (1993), 1461–1468 | DOI

[185] Pitici F., Svirschevski S., “Effective-phonon theory for DNA melting”, Physical Review A, 44 (1991), 8348–8355 | DOI

[186] Zoli M., “Path integral method for DNA denaturation”, Physical Review E, 79 (2009), 041927 | DOI

[187] Ares S., Sanchez A., “Modelling disorder: the cases of wetting and DNA denaturation”, European Physical Journal B, 56 (2007), 253–258 | DOI

[188] Theodorakopoulos N., Dauxois T., Peyrard M., “Order of the Phase Transition in Models of DNA Thermal Denaturation”, Physical Review Letters, 85 (2000), 6–9 | DOI

[189] Zhang Y., Zheng W.-M., Liu J.-X., Chen Y. Z., “Theory of DNA melting based on the Peyrard–Bishop model”, Physical Review E, 56 (1997), 7100–7115 | DOI

[190] Joyeux M., Buyukdagli S., “Dynamical model based on finite stacking enthalpies for homogeneous and inhomogeneous DNA thermal denaturation”, Physical Review E, 72 (2005), 051902 | DOI

[191] Buyukdagli S., Sanrey M., Joyeux M., “Towards more realistic dynamical models for DNA secondary structure”, Chemical Physics Letters, 419 (2006), 434–438 | DOI

[192] Radosz A., Ostasiewicz K., Magnuszewski P., Damczyk J., Radosinski L., Kusmartsev F. V., Samson J. H., Mitus A. C., Pawlik G., “Thermodynamics of entropy-driven phase transformations”, Physical Review E, 73 (2006), 026127 | DOI

[193] Weber G., “Sharp DNA denaturation due to solvent interaction”, Europhysics Letters, 73 (2006), 806–811 | DOI

[194] Cuenda S., Sanchez A., “On the discrete Peyrard-Bishop model of DNA: Stationary solutions and stability”, CHAOS, 16 (2006), 023123 | DOI | Zbl

[195] Zamora-Sillero E., Shapovalov A. V., Esteban F. J., “Formation, control, and dynamics of N localized structures in the Peyrard–Bishop model”, Physical Review E, 76 (2007), 066603 | DOI | MR

[196] Slade G. G., Drigo Filho E., Ruggiero J. R., “Stability of breathers in simple mechanical models for DNA”, Journal of Physics: Conference Series, 246 (2010), 012039 | DOI

[197] Tabi C. B., Ekobena Fouda H. P., Mohamadou A., Kofane T. C., “Wave propagation of coupled modes in the DNA double helix”, Physica Scripta, 83 (2011), 035802 | DOI | Zbl

[198] Tabi C. B., Mohamadou A., Kofane T. C., “Soliton excitation in the DNA double helix”, Physica Scripta, 77 (2008), 045002 | DOI | Zbl

[199] Tabi C. B., Mohamadou A., Kofane T. C., “Modulational instability in the anharmonic Peyrard–Bishop model of DNA”, European Physical Journal B, 74 (2010), 151–158 | DOI

[200] Maniadis P., Alexandrov B. S., Bishop A. R., Rasmussen K. O., “Feigenbaum cascade of discrete breathers in a model of DNA”, Physical Review E, 83 (2011), 011904 | DOI

[201] Zdravkovic S., Sataric M. V., “The Impact of Viscosity on the DNA Dynamics”, Physica Scripta, 64 (2001), 612–619 | DOI | Zbl

[202] Zdravkovic S., Sataric M. V., “Solitonic speed in DNA”, Physical Review E, 77 (2008), 031906 | DOI

[203] Cuevas J., Archilla J. F. R., Gaididei Yu. B., Romero F. R., “Moving breathers in a DNA model with competing short- and long-range dispersive interactions”, Physica D: Nonlinear Phenomena, 163 (2002), 106–126 | DOI | MR | Zbl

[204] Larsen P. V., Christiansen P. L., Bang O., Archilla J. F. R., Gaididei Yu. B., “Energy funneling in a bent chain of Morse oscillators with long-range coupling”, Physical Review E, 69 (2004), 026603 | DOI

[205] Alvarez A., Romero F. R., Archilla J. F. R., Cuevas J., Larsen P. V., “Breather trapping and breather transmission in a DNA model with an interface”, European Physical Journal B, 51 (2006), 119–130 | DOI

[206] Forinash K., Keeney J., “Nonlinearly coupled double chain systems”, Journal of Biological Physics, 18 (1991), 19–29 | DOI

[207] Alvarez A., Romero F. R., Cuevas J., Archilla J. F. R., “Moving breather collisions in Klein–Gordon chains of oscillators”, European Physical Journal B, 70 (2009), 543–555 | DOI

[208] Wattis J. A. D., Harris S. A., Grindon C. R., Laughton C. A., “Dynamic model of base pair breathing in a DNA chain with a defect”, Physical Review E, 63 (2001), 061903 | DOI

[209] Zolotaryuk A. V., Christiansen P. L., Savin A. V., “Two-dimensional dynamics of a free molecular chain with a secondary structure”, Physical Review E, 54 (1996), 3881–3894 | DOI

[210] Muto V., Lomdahl P. S., Christiansen P. L., “Two-dimensional discrete model for DNA dynamics: Longitudinal wave propagation and denaturation”, Physical Review A, 42 (1990), 7452–7458 | DOI

[211] Muto V., “Soliton Oscillations for DNA Dynamics”, Acta Applicandae Mathematicae, 15:1 (2011), 5–15 | DOI | MR | Zbl

[212] Alexandrov B. S., Wille L. T., Rasmussen K. O., Bishop A. R., Blagoev K. B., “Bubble statistics and dynamics in double-stranded DNA”, Physical review E, 74 (2006), 050901(R) | DOI

[213] Altan-Bonnet G., Libchaber A., Krichevsky O., “Bubble Dynamics in Double-Stranded DNA”, Physical Review Letters, 90 (2003), 138101 | DOI

[214] Sobell H. M., “Actinomycin and DNA transcription”, PNAS USA, 82 (1985), 5328–5331 | DOI

[215] Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F., “DNA: an extensible molecule”, Science, 271 (1996), 792–794 | DOI

[216] Techera M., Daemen L. L., Prohofsky E. W., “Analysis of a nonlinear model for the DNA double helix: Energy transfer in an inhomogeneous chain”, Physical Review A, 42 (1990), 1008–1011 | DOI

[217] Muto V., “Local Denaturation in DNA Molecules”, Journal of Biological Physics, 19 (1993), 113–122 | DOI

[218] Forinash K., Bishop A. R., Lomdahl P. S., “Nonlinear dynamics in a double-chain model of DNA”, Physical Review B, 43 (1991), 10743–10750 | DOI

[219] Forinash K., Peyrard M., Malomed B., “Interaction of discrete breathers with impurity modes”, Physical Review E, 49 (1994), 3400–3411 | DOI

[220] Chela-Fiores J., Migoni R. L., “CG Methylation in DNA Transcription”, International Journal of Theoretical Physics, 29 (1990), 853–862 | DOI

[221] Campa A., Giansanti A., “Experimental tests of the Peyrard–Bishop model applied to the melting of very short DNA chains”, Physical Review E, 58 (1998), 3585–3588 | DOI

[222] Lavery R., Lebrun A., Allemand J.-F., Bensimon D., Croquette V., “Structure and mechanics of single biomolecules: experiment and simulation”, Journal of Physics: Condensed Matter, 14 (2002), R383–R414 | DOI

[223] Bustamante C., Smith S. B., Liphardt J., Smith D., “Single-molecule studies of DNA mechanics”, Current Opinion in Structural Biology, 10 (2000), 279–285 | DOI

[224] Smith S. B., Finzi L., Bustamante C., “Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads”, Science, 258 (1992), 1122–1126 | DOI

[225] Bustamante C., Marko J. F., Siggia E. D., Smith S., “Entropic elasticity of lambda-phage DNA”, Science, 265 (1994), 1599–600 | DOI

[226] Smith S. B., Cui Y., Bustamante C., “Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules”, Science, 271 (1996), 795–799 | DOI

[227] Allemand J. F., Bensimon D., Lavery R., Croquette V., “Stretched and overwound DNA forms a Pauling-like structure with exposed bases”, PNAS USA, 95 (1998), 14152–14157 | DOI

[228] Clausen-Schaumann H., Rief M., Tolksdorf C., Gaub H. E., “Mechanical Stability of Single DNA Molecules”, Biophysical Journal, 78 (2000), 1997–2007 | DOI

[229] Rief M., Clausen-Schaumann H., Gaub H. E., “Sequence-dependent mechanics of single DNA molecules”, Nature Structural Biology, 6 (1999), 346–349 | DOI

[230] Bockelmann U., Essevaz-Roulet B., Heslot F., “Molecular Stick-Slip Motion Revealed by Opening DNA with Piconewton Forces”, Physical Review Letters, 79 (1997), 4489–4492 | DOI

[231] Essevaz-Ruolet B., Bockelmann U., Heslot F., “Mechanical separation of the complementary strands of DNA”, PNAS USA, 94 (1997), 11935–11940 | DOI

[232] Bockelmann U., Thomen Ph., Essevaz-Roulet B., Viasnoff V., Heslot F., “Unzipping DNA with Optical Tweezers: High Sequence Sensitivity and Force Flips”, Biophysical Journal, 82 (2002), 1537–1553 | DOI

[233] Bockelmann U., Viasnoff V., “Theoretical Study of Sequence-Dependent Nanopore Unzipping of DNA”, Biophysical Journal, 94 (2008), 2716–2724 | DOI

[234] Benham C. J., “Theoretical analysis of heteropolymeric transitions in superhelical DNA molecules of specified sequence”, The Journal of Chemical Physics, 92 (1990), 6294–6305 | DOI

[235] Benham C. J., “Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci”, PNAS USA, 90 (1993), 2999–3003 | DOI

[236] Benham C. J., “Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions”, Journal of Molecular Biology, 255 (1996), 425–434 | DOI

[237] Fye R. M., Benham C. J., “Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA”, Physical Review E, 59 (1999), 3408–3426 | DOI

[238] Rudnick J., Bruinsma R., “Effects of torsional strain on thermal denaturation of DNA”, Physical Review E, 65 (2002), 030902(R) | DOI

[239] Hwa T., Marinari E., Sneppen K., Tang L. H., “Localization of denaturation bubbles in random DNA sequences”, PNAS USA, 100 (2003), 4411–4416 | DOI

[240] Michoel T., Van de Peer Y., “Helicoidal transfer matrix model for inhomogeneous DNA melting”, Physical Review E, 73 (2006), 011908 | DOI

[241] Nelson P., “Transport of torsional stress in DNA”, PNAS USA, 96 (1999), 14342–14347 | DOI

[242] Benham C. J., Singh R. R. P., Comment on “Can One Predict DNA Transcription Start Sites by Studying Bubbles?”, Physical Review Letters, 97 (2006), 059801 | DOI

[243] Benham C., Kohwi-Shigematsu T., Bode J., “Stress-induced Duplex DNA Destabilization in Scaffold/Matrix Attachment Regions”, Journal of Molecular Biology, 274 (1997), 181–196 | DOI

[244] Wang H., Benham C. J., “Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress”, BMC Bioinformatics, 7 (2006), 248 | DOI

[245] Trovato F., Tozzini V., “Supercoiling and Local Denaturation of Plasmids with a Minimalist DNA Model”, Journal of Physical Chemistry B, 112 (2008), 13197–13200 | DOI

[246] Kumar S., Li M. S., “Biomolecules under mechanical force”, Physics Reports, 486 (2010), 1–74 | DOI

[247] Marenduzzo D., Bhattacharjee S. M., Maritan A., Orlandini E., Seno F., “Dynamical Scaling of the DNA Unzipping Transition”, Physical Review Letters, 88 (2002), 028102 | DOI

[248] Kapri R., Bhattacharjee S. M., Seno F., “Complete Phase Diagram of DNA Unzipping: Eye, Y-Fork, and Triple Point”, Physical Review Letters, 93 (2004), 248102 | DOI

[249] Kumar S., Giri D., Bhattacahrjee S. M., “Force induced triple point for interacting polymers”, Physical Review E, 71 (2005), 051804 | DOI

[250] Giri D., Kumar S., “Effects of the eye phase in DNA unzipping”, Physical Review E, 73 (2006), 050903(R) | DOI | MR

[251] Kumar S., Giri D., “Probability distribution analysis of force induced unzipping of DNA”, The Journal of Chemical Physics, 125 (2006), 044905 | DOI

[252] Singh A. R., Giri D., Kumar S., “Force induced melting of the constrained DNA”, The Journal of Chemical Physics, 32 (2010), 235105 | DOI

[253] Lubensky D. K., Nelson D. R., “Pulling Pinned Polymers and Unzipping DNA”, Physical Review Letters, 85 (2000), 1572–1575 | DOI

[254] Lubensky D. K., Nelson D. R., “Single molecule statistics and the polynucleotide unzipping transition”, Physical Review E, 65 (2002), 031917 | DOI | MR

[255] Thompson R. E., Siggia E. D., “Physical limits on the mechanical measurement of the secondary structure of biomolecules”, Europhysics Letters, 31 (1995), 335–340 | DOI

[256] Viovy J. L., Heller C., Caron F., Cluzel P., Chatenay D., “Sequencing of DNA by mechanical opening of the double helix: a theoretical evaluation”, Comptes rendus de l' Academie des sciences Paris (Life Sciences), 317 (1994), 795–800

[257] Peyrard M., Using DNA to probe nonlinear localized excitations?, Europhysics Letters, 44 (1998), 271–277 | DOI

[258] Krautbauer R., Rief M., Gaub H. E., “Unzipping DNA Oligomers”, Nano Letters, 3 (2003), 493–496 | DOI

[259] Singh N., Singh Y., “Statistical theory of force-induced unzipping of DNA”, European Physical Journal E, 17 (2005), 7–19 | DOI

[260] Voulgarakis N. K., Redondo A., Bishop A. R., Rasmussen K. O., “Probing the Mechanical Unzipping of DNA”, Physical Review Letters, 96 (2006), 248101 | DOI

[261] Zeng Y., Montrichok A., Zocchi G., “Bubble nucleation and cooperativity in DNA melting”, Journal of Molecular Biology, 339 (2004), 67–75 | DOI

[262] Ares S., Voulgarakis N. K., Rasmussen K. O., Bishop A. R., “Bubble Nucleation and Cooperativity in DNA Melting”, Physical Review Letters, 94 (2005), 035504 | DOI

[263] Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E., “Equation of State Calculations by Fast Computing Machines”, The Journal of Chemical Physics, 21 (1953), 1087–1092 | DOI

[264] van Erp T. S., Cuesta-Lopez S., Peyrard M., “Bubbles and denaturation in DNA”, European Physical Journal E, 20 (2006), 421–434 | DOI

[265] van Erp T. S., Cuesta-Lopez S., Hagmann J.-G., Peyrard M., Can One Predict DNA Transcription Start Sites by Studying Bubbles?, Physical Review Letters, 95 (2005), 218104 | DOI

[266] Wiegand R. C., Godson G. N., Radding C. N., “Specificity of the $S_1$ Nuclease from Aspergillus oryzae”, The Journal of Biological Chemistry, 250 (1975), 8848–8855

[267] Rapti Z., Smerzi A., Rasmussen K. O., Bishop A. R., Choi C. H., Usheva A., “Lengthscales and cooperativity in DNA bubble formation”, Europhysics Letters, 74 (2006), 540–546 | DOI

[268] Rapti Z., Smerzi A., Rasmussen K. O., Bishop A. R., “Healing length and bubble formation in DNA”, Physical Review E, 73 (2006), 051902 | DOI

[269] Choi C. H., Rapti Z., Gelev V., Hacker M. R., Alexandrov B., Park E. J., Park J. S., Horikoshi N., Smerzi A., Rasmussen K. O., Bishop A. R., Usheva A., “Profiling the Thermodynamic Softness of Adenoviral Promoters”, Biophysical Journal, 95 (2008), 597–608 | DOI

[270] Liu F., Tostesen E., Sundet J. K., Jenssen T.-K., Bock C., Jerstad G. I., Thilly W. G., Hovig E., “The Human Genomic Melting Map”, PLoS Computational Biology, 3:5 (2007), 0874–0886 | DOI

[271] Abeel T., Saeys Y., Bonnet E., Rouze P., Van de Peer Y., “Generic eukaryotic core promoter prediction using structural features of DNA”, Genome Research, 18 (2008), 310–323 | DOI

[272] Kantorovitz M. R., Rapti Z., Gelev V., Usheva A., “Computing DNA duplex instability profiles efficiently with a two-state model: trends of promoters and binding sites”, BMC Bioinformatics, 11 (2010), 604 | DOI

[273] Alexandrov B. S., Gelev V., Yoo S. W., Bishop A. R., Rasmussen K. O., Usheva A., “Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter”, PLoS Computational Biology, 5 (2009), 1–10 | DOI | MR

[274] Alexandrov B. S., Gelev V., Monisova Y., Alexandrov L. B., Bishop A. R., Rasmussen K. O., Usheva A., “A nonlinear dynamic model of DNA with a sequence-dependent stacking term”, Nucleic Acids Research, 37 (2009), 2405–2410 | DOI

[275] Alexandrov B. S., Gelev V., Yoo S. W., Alexandrov L. B., Fukuyo Y., Bishop A. R., Rasmussen K. O., Usheva A., “DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation”, Nucleic Acids Research, 38 (2010), 1790–1795 | DOI

[276] Alexandrov B. S., Valtchinov V. I., Alexandrov L. B., Gelev V., Dagon Y., Bock J., Kohane I. S., Rasmussen K. O., Bishop A. R., Usheva A., “DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases”, PLoS One, 6 (2011), 1–6 | DOI

[277] Dornberger U., Leijon M., Fritzsche H., “High Base Pair Opening Rates in Tracts of GC Base Pairs”, The Journal of Biological Chemistry, 274 (1999), 6957–6962 | DOI

[278] Maiti S., Haupts U., Webb W. W., “Fluorescence correlation spectroscopy: Diagnostics for sparse molecules”, PNAS USA, 94 (1997), 11753–11757 | DOI

[279] Bonnet G., Krichevsky O., Libchaber A., “Kinetics of conformational fluctuations in DNA hairpin-loops”, PNAS USA, 95 (1998), 8602–8606 | DOI

[280] Krueger A., Protozanova E., Frank-Kamenetskii M. D., “Sequence-dependent base pair opening in DNA double helix”, Biophysical Journal, 90 (2006), 3091–3099 | DOI

[281] Gueron M., Kochoyan M., Leroy J. L., “A single mode of DNA base-pair opening drives imino proton exchange”, Nature, 328 (1987), 89–92 | DOI

[282] Kochoyan M., Leroy J. L., Gueron M., “Proton Exchange and Base-pair Lifetimes in a Deoxy-duplex Containing a Purine-Pyrimidine Step and in the Duplex of Inverse Sequence”, Journal of Molecular Biology, 196 (1987), 599–609 | DOI

[283] Leroy J. L., Kochoyan M., Huynh-Dinh T., Gueron M., “Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton”, Journal of Molecular Biology, 200 (1988), 223–238 | DOI

[284] Kochoyan M., Lancelot G., Leroy J. L., “Study of structure, base-pair opening kinetics and proton exchange mechanism of the d(AATTGCAATT) self-complementary oligodeoxynucleotide in solution”, Nucleic Acids Research, 16 (1988), 7685–7702 | DOI

[285] Moe J. G., Russu I. M., “Proton exchange and base-pair opening kinetics in 5'-d(CGCGAATTCGCG)-3' and related dodecamers”, Nucleic Acids Research, 18 (1990), 821–827 | DOI

[286] Leroy J. L., Gao X. L., Gueron M., Patel D. J., “Proton exchange and internal motions in two chromomycin dimer-DNA oligomer complexes”, Biochemistry, 30 (1991), 5653–5661 | DOI

[287] David S. S., Williams S. D., “Chemistry of glycosylases and endonucleases involved in base-excision repair”, Chemical Reviews, 98 (1998), 1221–1262 | DOI

[288] Stivers J. T., “Site-Specific DNA Damage Recognition by Enzyme-Induced Base Flipping”, Progress in Nucleic Acid Research and Molecular Biology, 77 (2004), 37–65 | DOI

[289] Klimasauskas S., Kumar S., Roberts R. J., Cheng X., “HhaI methyltransferase flips its target base out of the DNA helix”, Cell, 76 (1994), 57–69 | DOI

[290] Reinisch K. M., Chen L., Verdine G. L., Lipscomb W. N., “The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing”, Cell, 82 (1995), 143–153 | DOI

[291] Cheng X., Roberts R. J., “AdoMet-dependent methylation, DNA methyltransferases and base flipping”, Nucleic Acids Research, 29 (2001), 3784–3795 | DOI

[292] Lau A. Y., Wyatt M. D., Glassner B. J., Samson L. D., Ellenberger T., “Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG”, PNAS USA, 97 (2000), 13573–13578 | DOI

[293] Hollis T., Ichikawa Y., Ellenberger T., “DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase,Escherichia coli AlkA”, EMBO Journal, 19 (2000), 758–766 | DOI

[294] Fromme J. C., Verdine G. L., “DNA Lesion Recognition by the Bacterial Repair Enzyme MutM”, The Journal of Biological Chemistry, 278 (2003), 51543–51548 | DOI

[295] Lyakhov I. G., Hengen P. N., Rubens D., Schneider T. D., “The P1 phage replication protein RepA contacts an otherwise inaccessible thymine N3 proton by DNA distortion or base flipping”, Nucleic Acids Research, 29 (2001), 4892–4900 | DOI

[296] Schneider T. D., “Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation”, Nucleic Acids Research, 29 (2001), 4881–4891 | DOI

[297] Gueron M., Leroy J. L., “Studies of base pair kinetics by NMR measurement of proton exchange”, Methods in Enzymology, 261 (1995), 383–413 | DOI

[298] Crothers D. M., Cole P. E., Hilbers C. W., Shulman R. G., “The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA”, Journal of Molecular Biology, 87 (1974), 63–72 | DOI

[299] Warmlander S., Sen A., Leijon M., “Imino proton exchange in DNA catalyzed by ammonia and trimethylamine: evidence for a secondary long-lived open state of the base pair”, Biochemistry, 39 (2000), 607–615 | DOI

[300] Folta-Stogniew E., Russu I. M., “Base-catalysis of imino proton exchange in DNA: effects of catalyst upon DNA structure and dynamics”, Biochemistry, 35 (1996), 8439–8449 | DOI

[301] Leijon M., Leroy J. L., “Internal motions of nucleic acid structures and the determination of base-pair lifetimes”, Biochimie, 79 (1997), 775–779 | DOI

[302] Forsen S., Hoffman R. A., “Study of Moderately Rapid Chemical Exchange Reactions by Means of Nuclear Magnetic Double Resonance”, The Journal of Chemical Physics, 39 (1963), 2892–2901 | DOI

[303] Mihailescu M. R., Russu I. M., “A signature of the T$\to$R transition in human hemoglobin”, PNAS USA, 98 (2001), 3773–3777 | DOI

[304] Snoussi K., Leroy J. L., “Imino proton exchange and base-pair kinetics in RNA duplexes”, Biochemistry, 31 (2001), 8898–8904 | DOI | MR

[305] Snoussi K., Leroy J. L., “Alteration of A.T base-pair opening kinetics by the ammonium cation in DNA A-tracts”, Biochemistry, 41 (2002), 12467–12474 | DOI

[306] Varnai P., Canalia M., Leroy J. L., “Opening mechanism of G.T/U pairs in DNA and RNA duplexes: a combined study of imino proton exchange and molecular dynamics simulation”, Journal of American Chemical Society, 126 (2004), 14659–14667 | DOI

[307] Chen C., Russu I. M., “Sequence-dependence of the energetics of opening of at basepairs in DNA”, Biophysical Journal, 87 (2004), 2545–2551 | DOI

[308] Englander S. W., “A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease”, Biochemistry, 2 (1963), 798–807 | DOI

[309] Printz M. P., von Hippel P. H., “Hydrogen Exchange Studies of DNA Structure”, PNAS USA, 53 (1965), 363–370 | DOI

[310] Williams M. N., Crothers D. M., “Binding kinetics of mercury(II) to polyribonucleotides”, Biochemistry, 14 (1975), 1944–1951 | DOI

[311] Wilcoxon J., Schurr J. M., “Temperature dependence of the dynamic light scattering of linear phi29 DNA: Implications for spontaneous opening of the double helix”, Biopolymers, 22 (1983), 2273–2321 | DOI

[312] Frank-Kamenetskii M. D., “Fluctuationsal Motility of DNA”, Structure and Motion: Membranes, Nucleic Acids and Proteins, eds. Clemeti E., Corongiu G., Sarma M. H., Sarma R. H., Adenine Press, Guilderland, 1985, 417–422

[313] Leroy J.-L., Broseta D., Gueron M., “Proton exchange and base-pair kinetics of poly(rA):poly(rU) and poly(rI):poly(rC)”, Journal of Molecular Biology, 184, 165–178 | DOI

[314] Leroy J. L., Bolo N., Figueroa N., Plateau P., Gueron M., “Internal motions of transfer RNA: a study of exchanging protons by magnetic resonance”, Journal of Biomolecular Structure and Dynamics, 2 (1985), 915–939 | DOI

[315] Kochoyan M., Leroy J. L., Gueron M., “Processes of base-pair opening and proton exchange in Z-DNA”, Biochemistry, 29 (1990), 4799–4805 | DOI

[316] Leijon M., Graslund A., “Effects of sequence and length on imino proton exchange and base pair opening kinetics in DNA oligonucleotide duplexes”, Nucleic Acids Research, 20 (1992), 5339–5343 | DOI

[317] Nonin S., Leroy J. L., Gueron M., “Terminal base pairs of oligodeoxynucleotides: imino proton exchange and fraying”, Biochemistry, 34 (1995), 10652–10659 | DOI

[318] Moe J. G., Russu I. M., “Kinetics and energetics of base-pair opening in 5'-d(CGCGAATTCGCG)-3' and a subsituted dodecamer containing G.T mismatches”, Biochemistry, 31 (1992), 8421–8428 | DOI

[319] Coman D., Russu I. M., “Base pair opening in three DNA-unwinding elements”, Journal of Biological Chemistry, 280 (2005), 20216–20221 | DOI

[320] Leroy J. L., Charretier E., Kochoyan M., Gueron M., “Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature”, Biochemistry, 27 (1988), 8894–8898 | DOI

[321] Yoon C., Prive G. G., Goodsell D. S., Dickerson R. E., “Structure of an alternating-B DNA helix and its relationship to A-tract DNA”, PNAS USA, 85 (1988), 6332–6336 | DOI

[322] Edwards K. J., Brown D. G., Spink N., Skelly J. V., Neidle S., “Molecular structure of the B-DNA dodecamer d(CGCAAATTTGCG)$_2$. An examination of propeller twist and minor-groove water structure at 2.2 Åresolution”, Journal of Moleclar Biology, 226 (1992), 1161–1173 | DOI

[323] Shatzky-Schwartz M., Arbuckle N. D., Eisenstein M., Rabinovich D., Bareket-Samish A., Haran T. E., Luisi B. F., Shakked Z., “X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature”, Journal of Molecular Biology, 267 (1997), 595–623 | DOI

[324] Leijon M., Zdunek J., Fritzsche H., Sklenar H., Graslund A., “NMR studies and restrained-molecular-dynamics calculations of a long A+T-rich stretch in DNA. Effects of phosphate charge and solvent approximations”, European Journal of Biochemistry, 234 (1995), 832–842 | DOI

[325] Warmlander S., Sponer J. E., Sponer J., Leijon M., “The influence of the thymine C5 methyl group on spontaneous base pair breathing in DNA”, Journal of Biological Chemistry, 277 (2002), 28491–28497 | DOI

[326] Movileanu L., Benevides J. M., Thomas G. J. Jr., “Determination of base and backbone contributions to the thermodynamics of premelting and melting transitions in B DNA”, Nucleic Acids Research, 30 (2002), 3767–3777 | DOI

[327] Dornberger U., Spackova N., Walter A., Gollmick F. A., Sponer J., Fritzsche H., “Solution structure of the dodecamer d-(CATGGGCC-CATG)2 is B-DNA. Experimental and molecular dynamics study”, Journal of Biomolecular Structure Dynamics, 19 (2001), 159–174 | DOI

[328] Denisov E. T., Kinetika gomogennykh khimicheskikh reaktsii, Vysshaya shkola, M., 1978, 139 pp.

[329] Leijon M., Sehlstedt U., Nielsen P. E., Graslund A., “Unique base-pair breathing dynamics in PNA-DNA hybrids”, Journal of Molecular Biology, 271 (1997), 438–455 | DOI

[330] Moe J. G., Folta-Stogniew E., Russu I. M., “Energetics of base pair opening in a DNA dodecamer containing an $\mathrm{A_3T_3}$ tract”, Nucleic Acids Research, 23 (1995), 1984–1989 | DOI

[331] Coman D., Russu I. M., “A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA”, Biophysical Journal, 89 (2005), 3285–3292 | DOI

[332] Goddard N. L., Bonnet G., Krichevsky O., Libchaber A., “Sequence Dependent Rigidity of Single Stranded DNA”, Physical Review Letters, 85 (2000), 2400–2403 | DOI

[333] Movileanu L., Benevides J. M., Thomas G. I. Jr., “Temperature Dependence of the Raman Spectrum of DNA. II: Raman Signatures of Premelting and Melting Transitions of Poly(dA)-Poly(dT) and Comparison with Poly(dA-dT)-Poly(dA-dT)”, Biopolymers, 63 (2002), 181–194 | DOI

[334] Peyrard M., Cuesta-Lopez S., Angelov D., “Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules”, Journal of Physics: Condensed Matter, 21:3 (2009), 034103 | DOI

[335] Freier S. M., Hill K. O., Dewey T. G., Marky L. A., Breslauer K. J., Turner D. H., “Solvent effects on the kinetics and thermodynamics of stacking in poly(cytidylic acid)”, Biochemistry, 20 (1981), 1419–1426 | DOI

[336] Gueron M., Shulman R. G., Eisinger J., “Energy transfer in dinucleotides”, PNAS USA, 56 (1966), 814–818 | DOI

[337] Warshaw M. M., Tinoco I. Jr., “Absorption and optical rotatory dispersion of six dinucleoside phosphates”, Journal of Molecular Biology, 13 (1965), 54–64 | DOI

[338] Leng M., Felsenfeld G., “A study of polyadenylic acid at neutral pH”, Journal of Molecular Biology, 15 (1966), 455–466 | DOI

[339] Brahms J., Michelson A. M., Van Holde K. E., “Adenylate Olygomers in Single- and Double-strand Conformation”, Journal of Molecular Biology, 15 (1966), 467–488 | DOI

[340] Adler A., Grossman L., Fasman G. D., “Single-stranded oligomers and polymers of cytidylic and 2'-deoxycytidylic acids: comparative optical rotatory studies”, PNAS USA, 57 (1967), 423–430 | DOI

[341] Vesnaver G., Breslauer K. J., “The contribution of DNA single-stranded order to the thermodynamics of duplex formation”, PNAS USA, 88 (1991), 3569–3573 | DOI

[342] Holbrook J. A., Capp M. W., Saecker R. M., Record M. T. Jr., “Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices”, Biochemistry, 38 (1999), 8409–8422 | DOI

[343] Zhou J., Gregurick S. K., Krueger S., Schwarz F. P., “Conformational Changes in Single-Strand DNA as a Function of Temperature by SANS”, Biophysical Journal, 90 (2006), 544–551 | DOI

[344] Mills J. B., Vacano E., Hagerman P. J., “Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of Poly(dT) and Poly(dA)”, Journal of Molecular Biology, 285 (1999), 245–257 | DOI

[345] Benight A. S., Wartell R. M., Howell D. K., “Theory agrees with experimental thermal denaturation of short DNA restriction fragments”, Nature, 289 (1981), 203–205 | DOI

[346] Tibanyenda N., De Bruin S. H., Haasnoot C. A., van der Marel G. A., van Boom J. H., Hilbers C. W., “The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G):d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A)”, European Journal of Biochemistry, 139 (1984), 19–27 | DOI

[347] Cuesta-Lopez S., Menoni H., Angelov D., Peyrard M., “Guanine radical chemistry reveals the effect of thermal fluctuations in gene promoter regions”, Nucleic Acids Research, 39 (2011), 5276–5283 | DOI

[348] Coll M., Frederick C. A., Wang A. H., Rich A., “A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG)$_2$ and its complex with distamycin”, PNAS USA, 84 (1987), 8385–8389 | DOI

[349] Ting J. J.-L., Peyrard M., “Effective breather trapping mechanism for DNA transcription”, Physical Review E, 53 (1996), 1011–1020 | DOI | MR

[350] Ares S., Kalosakas G., “Distribution of Bubble Lengths in DNA”, Nano Letters, 7 (2007), 307–311 | DOI

[351] Krichevskii O. M., Lichnoe soobschenie, 6.11.2012

[352] Padro J. A., Saiz L., Guardia E., “Hydrogen bonding in liquid alcohols: a computer simulation study”, Journal of Molecular Structure, 416 (1997), 243–248 | DOI

[353] Guardia E., Marti J., Padro J. A., Saiz L., Komolkin A. V., “Dynamics in hydrogen bonded liquids: water and alcohols”, Journal of Molecular Liquids, 96–97 (2002), 3–17 | DOI

[354] Breslauer K. J., Frank R., Blocker H., Marky L. A., “Predicting DNA duplex stability from the base sequence”, PNAS USA, 83 (1986), 3746–3750 | DOI

[355] Nonin S., Leroy J. L., Gueron M., “Acid-induced exchange of the imino proton in G.C pairs”, Nucleic Acids Research, 24 (1996), 586–595 | DOI

[356] Nakahara M., Wakai C., “Inertial and attractive potential effects on rotation of solitary water molecules in apolar and polar solvents”, The Journal of Chemical Physics, 97 (1992), 4413 | DOI

[357] Every A. E., Russu I. M., “Probing the Role of Hydrogen Bonds in the Stability of Base Pairs in Double-Helical DNA”, Biopolymers, 87 (2007), 165–173 | DOI

[358] Fixman M., Friere J., “Theory of DNA melting curves”, Biopolymers, 16 (1977), 2693–2704 | DOI

[359] Poland D., “Recursion Relation Generation of Probability Profiles for Specific-Sequence Macromolecules with Long-Range Correlations”, Biopolymers, 13 (1974), 1859–1871 | DOI

[360] Gotoh O., Tagashira Y., “Stabilities of Nearest-Neighbor Doublets in Double-Helical DNA Determined by Fitting Calculated Melting Profiles to Observed Profiles”, Biopolymers, 20 (1981), 1033–1042 | DOI

[361] Gordan R., Hartemink A. J., “Using DNA duplex stability information for transcription factor binding site discovery”, Pacfic Symposium on Biocomputing, 13 (2008), 453–464

[362] Klump H., Ackermann T., “Experimental thermodynamics of the helix-random coil transition. IV: Influence of the base composition of DNA on the transition enthalpy”, Biopolymers, 10 (1971), 513–522 | DOI

[363] Marky L. A., Breslauer K. J., “Calorimetric determination of base-stacking enthalpies in double-helical DNA molecules”, Biopolymers, 21 (1982), 2185–2194 | DOI

[364] Chaplin M., Water Clusters: Overview, (data obrascheniya: 21.10.2013) http://www.lsbu.ac.uk/water/abstrct.html

[365] Klyachko N. L., “Fermenty — biologicheskie katalizatory: osnovnye printsipy deistviya”, Sorosovskii obrazovatelnyi zhurnal, 1997, no. 3, 58–63 | MR

[366] Banerjee A., Sobell H. M., “Presence of nonlinear excitations in DNA structure and their relationship to DNA premelting and to drug intercalation”, Journal of Biomolecular Structure and Dynamics, 1 (1983), 253–262 | DOI

[367] de los Santos F., Al Hammal O., Munoz M. A., “Simplified Langevin approach to the Peyrard–Bishop–Dauxois model of DNA”, Physical Review E, 77 (2008), 032901

[368] Beveridge D. L., Barreiro G., Byun K. S., Case D. A., Cheatham T. E. 3rd, Dixit S. B., Giudice E., Lankas F., Lavery R., Maddocks J. H., Osman R., Seibert E., Sklenar H., Stoll G., Thayer K. M., Varnai P., Young M. A., “Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I: Research Design and Results on d(CpG) Steps”, Biophysical Journal, 87 (2004), 3799–3813 | DOI

[369] Dixit S. B., Beveridge D. L., Case D. A., Cheatham T. E. 3rd, Giudice E., Lankas F., Lavery R., Maddocks J. H., Osman R., Sklenar H., Thayer K. M., Varnai P., “Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. II: Sequence Context Effects on the Dynamical Structures of the 10 Unique Dinucleotide Steps”, Biophysical Journal, 89 (2005), 3721–3740 | DOI