Self-Organized Maps on Continuous Bump Attractors
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 234-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we describe a simple binary neuron system, which implements a self-organized map. The system consists of $R$ input neurons ($R$ receptors), and $N$ output neurons of a recurrent neural network. The neural network has a quasi-continuous set of attractor states (one-dimensional “bump attractor”). Due to the dynamics of the network, each external signal (i.e. activity state of receptors) imposes transition of the recurrent network into one of its stable states (points of its attractor). That makes our system different from the “winner takes all” construction of T. Kohonen. In case, when there is a one-dimensional cyclical manifold of external signals in $R$-dimensional input space, and the recurrent neural network presents a complete ring of neurons with local excitatory connections, there exists a process of learning of connections between the receptors and the neurons of the recurrent network, which enables a topologically correct mapping of input signals into the stable states of the neural network. The convergence rate of learning and the role of noises and other factors affecting the described phenomenon has been evaluated in computational simulations.
@article{MBB_2013_8_1_a8,
     author = {K. P. Solovyeva},
     title = {Self-Organized {Maps} on {Continuous} {Bump} {Attractors}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {234--247},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a8/}
}
TY  - JOUR
AU  - K. P. Solovyeva
TI  - Self-Organized Maps on Continuous Bump Attractors
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 234
EP  - 247
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a8/
LA  - ru
ID  - MBB_2013_8_1_a8
ER  - 
%0 Journal Article
%A K. P. Solovyeva
%T Self-Organized Maps on Continuous Bump Attractors
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 234-247
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a8/
%G ru
%F MBB_2013_8_1_a8
K. P. Solovyeva. Self-Organized Maps on Continuous Bump Attractors. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 234-247. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a8/

[1] Dunin-Barkowski W., “Data formats in multi-neuronal systems and brain reverse engineering”, Invited talk, Conference Biologically Inspired Cognitive Architecture (2011) (data obrascheniya 10.04.2013) http://2045.ru/pdf/ARLINGTON20111106wldb.pdf

[2] Kass J. H., “Topographic Maps are Fundamental to Sensory Processing”, Brain Research Bulletin, 44:2 (1997), 107–112 | DOI

[3] Kohonen T., “Self-Organized Formation of Topologically Correct Feature Maps”, Biological Cybernetics, 43:1 (1982), 59–69 | DOI | MR | Zbl

[4] Dunin-Barkowski W., Osovets N., “Hebb–Hopfield neural networks based on one-dimentional sets of neuron states”, Neural Processing Letters, 2:5 (1995), 28–31 | DOI

[5] Knierim J. J., Zhang K., “Attractor dynamics of spatially correlated neural activity in the limbic system”, Annu. Rev. Neurosci., 35 (2012), 267–285 | DOI

[6] Mak-Kallok U. S., Pitts V., “Logicheskoe ischislenie idei, otnosyaschikhsya k nervnoi aktivnosti”, Avtomaty, eds. Shennon K. E., Makkarti Dzh., Izd-vo inostr. lit., M., 1956, 363–384 (Perevod angliiskoi stati 1943 g.)

[7] Amari S. I., “Dynamics of pattern formation in lateral-inhibition type neural fields”, Bio. Cyber., 27 (1977), 77–87 | DOI | MR | Zbl

[8] Candia V., Rosset-Llobet J., Elbert T., Pascual-Leone A., “Changing the brain through therapy for musicians' hand dystonia”, Ann. N.Y. Acad. Sci., 1060 (2005), 335–342 | DOI

[9] Zhang K., “Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: A theory”, Journal of Neuroscience, 16 (1996), 2112–2126

[10] Tsodyks M., “Attractor neural network models of spatial maps in hippocampus”, Hippocampus, 9:4 (1999), 481–489 | 3.0.CO;2-S class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Stringer S. M., Rolls E. T., Trappenberg T. P., de Araujo I. E. T., “Self-organizing continuous attractor networks and path integration: two-dimentional models of place cells”, Network: Comput. Neural Syst., 13 (2002), 429–446 | DOI