Hole Conductivity in Heterogeneous DNA Fragments
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 135-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The characteristics of cation radical (hole) migration in heterogeneous DNA were investigated on the basis of Kubo formula, in which correlation functions were obtained from solutions of systems of Bogoliubov hierarchy. The cutting of Bogoliubov hierarchy was carried out by excepting correlations of the third and higher order. The obtained system of non-linear differential equations was investigated both analytically and numerically. The environment polarization, caused by interaction of holes with base pairs vibrations, was shown to play the key role in transport processes. The energy of the interaction can ten-fold exceed vibration energy. The transfer rate between adjacent DNA bases in one-dimensional case was shown to be almost independent of the nature and behavior of more distant pairs. The charge probability amplitude oscillates in the picosecond timescale. Nonetheless, the rates of hole transfer, obtained by averaging over these oscillations, turned out to be very close to the experimental data. The calculated dependence of the hole transfer rate between two guanine bases on the number of intervening adenine bases was also in good agreement with the experimental data. Besides, the temperature dependence of the transfer rate was investigated. Hopping mechanism was shown to make the main contribution to the hole transport process at $300$ K.
@article{MBB_2013_8_1_a7,
     author = {O. A. Ponomarev and A. S. Shigaev and A. I. Zhukov and V. D. Lakhno},
     title = {Hole {Conductivity} in {Heterogeneous} {DNA} {Fragments}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {135--160},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a7/}
}
TY  - JOUR
AU  - O. A. Ponomarev
AU  - A. S. Shigaev
AU  - A. I. Zhukov
AU  - V. D. Lakhno
TI  - Hole Conductivity in Heterogeneous DNA Fragments
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 135
EP  - 160
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a7/
LA  - ru
ID  - MBB_2013_8_1_a7
ER  - 
%0 Journal Article
%A O. A. Ponomarev
%A A. S. Shigaev
%A A. I. Zhukov
%A V. D. Lakhno
%T Hole Conductivity in Heterogeneous DNA Fragments
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 135-160
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a7/
%G ru
%F MBB_2013_8_1_a7
O. A. Ponomarev; A. S. Shigaev; A. I. Zhukov; V. D. Lakhno. Hole Conductivity in Heterogeneous DNA Fragments. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 135-160. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a7/

[1] Dekker C., Ratner M. A., “Electronic properties of DNA”, Physics World, 14:8 (2001), 29–33

[2] Giese B., “Electron transfer in DNA”, Current Opinion in Chemical Biology, 6 (2002), 612–618 | DOI

[3] Lakhno V. D., “DNA Nanobioelectronics”, International Journal of Quantum Chemistry, 108 (2008), 1970–1981 | DOI

[4] Triberis G. P., Dimakogianni M., “DNA in the material world: electrical properties and nano-applications”, Recent Patents on Nanotechnology, 3 (2009), 135–153 | DOI

[5] Eley D. D., Spivey D. I., “Semiconductivity of organic substances. 9: Nucleic acid in the dry state”, Transactions of the Faraday Society, 58 (1962), 411–415 | DOI

[6] Kawanishi S., Hiraku Y., Oikawa S., “Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging”, Mutation Research, 488 (2001), 65–76 | DOI

[7] Wagenknecht H.-A., “Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics”, Natural Product Reports, 23 (2006), 973–1006 | DOI

[8] Genereux J. C., Boal A. K., Barton J. K., “DNA-mediated Charge Transport in Redox Sensing and Signaling”, Journal of American Chemical Society, 132 (2010), 891–905 | DOI

[9] Sontz P. A., Mui T. P., Fuss J. O., Tainer J. A., Barton J. K., “DNA charge transport as a first step in coordinating the detection of lesions by repair proteins”, Proc. Natl. Acad. Sci. USA, 109 (2012), 1856–1861 | DOI

[10] Sontz P. A., Muren N. B., Barton J. K., “DNA Charge Transport for Sensing and Signaling”, Accounts of Chemical Research, 45 (2012), 1792–1800 | DOI

[11] Becker D., Sevilla M. D., “The chemical consequences of radiation damage to DNA”, Advances in Radiation Biology, 17 (1993), 121–180

[12] Sies H., Schulz W. A., Steenken S., “Adjacent guanines as preferred sites for strand breaks in plasmid DNA irradiated with 193 nm and 248 nm UV laser light”, Journal of Photochemistry and Photobiology B, 32 (1996), 97–102 | DOI

[13] Conwell E. M., “Charge transport in DNA in solution: The role of polarons”, Proc. Natl. Acad. Sci. USA, 102 (2005), 8795–8799 | DOI

[14] Kino K., Sugiyama H., “Possible cause of G-C$\to$C-G transversion mutation by guanine oxidation product, imidazolone”, Chemistry Biology, 8 (2001), 369–378 | DOI

[15] Armitage B., “Photocleavage of Nucleic Acids”, Chemical Reviews, 98 (1998), 1171–1200 | DOI | MR

[16] Joy A., Ghosh A. K., Schuster G. B., “One-Electron Oxidation of DNA Oligomers That Lack Guanine: Reaction and Strand Cleavage at Remote Thymines by Long-Distance Radical Cation Hopping”, Journal of American Chemical Society, 128 (2006), 5346–5347 | DOI

[17] Seidel C. A. M., Schulz A., Sauer M. H. M., “Nucleobase-Specific Quenching of Fluorescent Dyes. 1: Nucleobase One-Electron Redox Potentials and Their Correlation with Static and Dynamic Quenching Efficiencies”, Journal of Physical Chemistry B, 100 (1996), 5541–5553 | DOI

[18] Lewis F. D., Wu Y., “Dynamics of superexchange photoinduced electron transfer in duplex DNA”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2 (2001), 1–16 | DOI

[19] Porath D., Bezryadin A., Vries S., Dekker C., “Direct measurement of electrical transport through DNA molecules”, Nature (London), 403 (2000), 635–638 | DOI

[20] de Pablo P. J., Moreno-Herrero F., Colchero J., Herrero J. G., Herrero P., Baro A. M., Ordejon P., Soler J. M., Artacho E., “Absence of dc-Conductivity in lambda-DNA”, Physical Review Letters, 85 (2000), 4992–4995 | DOI

[21] Fink H.-W., Schonenberger C., “Electrical conduction through DNA molecules”, Nature (London), 398 (1999), 407–410 | DOI

[22] Kasumov A. Y., Kociak M., Gueron S., Reulet B., Volkov V. T., Klinov D. V., Bouchiat H., “Proximity-induced superconductivity in DNA”, Science, 291 (2001), 280–282 | DOI

[23] Shikhovtseva E. S., Ponomarev O. A., “The a-c field influence on conductive channels formation in thread-like structure polymers”, Physica A: Statistical Mechanics and its Applications, 231 (1996), 484–494 | DOI

[24] Yoo K.-H., Ha D. H., Lee J.-O., Park J. W., Kim J., Kim J. J., Lee H.-Y., Kawai T., Choi H. Y., “Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules”, Physical Review Letters, 87 (2001), 198102 | DOI

[25] Schmidt B. B., Hettler M. H., Schon G., “Nonequilibrium polaron hopping transport through DNA”, Physical Review B, 77 (2008), 165337 | DOI

[26] Slinker J. D., Muren N. B., Gorodetsky A. A., Barton J. K., “Multiplexed DNA-modified electrodes”, Journal of American Chemical Society, 132 (2010), 2769–2774 | DOI

[27] Slinker J. D., Muren N. B., Renfrew S. E., Barton J. K., “DNA charge transport over 34 nm”, Nature Chemistry, 3 (2011), 228–233 | DOI

[28] Cohen H., Nogues C., Ullien D., Daube S., Naaman Ro., Porath D., “Electrical characterization of self-assembled single- and double-stranded DNA monolayers using conductive AFM”, Faraday Discussions, 131 (2006), 367–376 | DOI

[29] Giese B., Biland A., “Recent developments of charge injection and charge transfer in DNA”, Chemical Communications, 2002, no. 7, 667–672 | DOI

[30] Murphy C. J., Arkin M. R., Jenkins Y., Ghatlia N. D., Bossmann S. H., Turro N. J., Barton J. K., “Long-range photoinduced electron transfer through a DNA helix”, Science, 262 (1993), 1025–1029 | DOI

[31] Brun A. M., Harriman A. J., “Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases”, Journal of American Chemical Society, 114 (1992), 3656–3660 | DOI

[32] Giese B., Wessely S., Spormann M., Lindemann U., Meggers E., Michel-Beyerle M. E., “On the Mechanism of Long-Range Electron Transfer through DNA”, Angewandte Chemie International Edition, 38 (1999), 996–998 (in English) | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[33] Meggers E., Michel-Beyerle M. E., Giese B., “Sequence Dependent Long Range Hole Transport in DNA”, Journal of American Chemical Society, 120 (1998), 12950–12955 | DOI

[34] Jortner J., Bixon M., Langenbacher T., Michel-Beyerle M., “Charge transfer and transport in DNA”, PNAS, 95 (1998), 12759–12765 | DOI

[35] O'Neill M. A., Barton J. K., “DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains”, Journal of American Chemical Society, 126 (2004), 11471–11483 | DOI

[36] Genereux J. C., Augustyn K. E., Davis M. L., Shao F., Barton J. K., “Back-Electron Transfer Suppresses the Periodic Length Dependence of DNA-Mediated Charge Transport across Adenine Tracts”, Journal of American Chemical Society, 130 (2008), 15150–15156 | DOI

[37] Lewis F. D., Liu X., Liu J., Miller S. E., Hayes R. T., Wasielewski M. R., “Direct measurement of hole transport dynamics in DNA”, Nature, 406 (2000), 51–53 | DOI

[38] Lewis F. D., Liu X., Liu J., Hayes R. T., Wasielewski M. R., “Dynamics and Equilibria for Oxidation of G, GG, and GGG Sequences in DNA Hairpins”, Journal of American Chemical Society, 122 (2000), 12037–12038 | DOI

[39] Lewis F. D., Zuo X., Liu J., Hayes R. T., Wasielewski M. R., “Dynamics of Inter- and Intrastrand Hole Transport in DNA Hairpins”, Journal of American Chemical Society, 124 (2002), 4568–4569 | DOI

[40] Lewis F. D., Liu J., Liu X., Zuo X., Hayes R. T., Wasielewski M. R., “Dynamics and Energetics of Hole Trapping in DNA by 7-Deazaguanine”, Angewandte Chemie International Edition, 41 (2002), 1026–1028 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[41] Lewis F. D., Liu X., Zuo X., Hayes R. T., Wasielewski M. R., “Dynamics and Energetics of Single-Step Hole Transport in DNA Hairpins”, Journal of American Chemical Society, 125 (2003), 4850–4861 | DOI

[42] Shigaev A. S., Ponomarev O. A., Lakhno V. D., “A new approach to microscopic modeling of a hole transfer in heteropolymer DNA”, Chemical Physics Letters, 513 (2011), 276–279 | DOI

[43] Kelley S. O., Barton J. K., “Electron transfer between bases in double helical DNA”, Science, 283 (1999), 375–381 | DOI

[44] Genereux J. C., Wuerth S. M., Barton J. K., “Single-step Charge Transport through DNA over Long Distances”, Journal of American Chemical Society, 133 (2011), 3863–3868 | DOI

[45] Mickley Conron S. M., Thazhathveetil A. K., Wasielewski M. R., Burin A. L., Lewis F. D., “Direct Measurement of the Dynamics of Hole Hopping in Extended DNA G-Tracts. An Unbiased Random Walk”, Journal of American Chemical Society, 132 (2010), 14388–14390 | DOI

[46] Holstein T., “Studies of polaron motion. I: The molecular-crystal model”, Annals of Physics, 8 (1959), 325–342 | DOI | Zbl

[47] Kubo R., “Statistical-Mechanical Theory of Irreversible Processes. I: General Theory and Simple Applications to Magnetic and Conduction Problems”, Journal of the Physical Society of Japan, 12 (1957), 570–586 | DOI | MR

[48] Peyrard M., Bishop A. R., “Statistical Mechanics of a Nonlinear Model for DNA Denaturation”, Physical Review Letters, 62 (1989), 2755–2758 | DOI

[49] Voityuk A. A., Rosch N., Bixon M., Jortner J., “Electronic Coupling for Charge Transfer and Transport in DNA”, Journal of Physical Chemistry B, 104 (2000), 9740–9745 | DOI

[50] Debije M. G., Milano M. T., Bernhard W. A., “DNA Responds to Ionizing Radiation as an Insulator, Not as a “Molecular Wire””, Angewandte Chemie International Edition, 38 (1999), 2752–2756 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[51] Lundin U., McKenzie R. H., “Temperature dependence of polaronic transport through single molecules and quantum dots”, Physical Review B, 66 (2002), 075303 | DOI

[52] Lakhno V. D., Sychyov V. V., “Modeling of the hole transfer dynamics in the tetramer GAGG”, Biophysics, 49 (2004), 430–433

[53] Kubarev S. I., Ponomarev O. A., Effekty dinamicheskoi svyazi v statisticheskoi fizike, Nauka, M., 1992, 141 pp.

[54] Yakushevich L. V., “Nonlinear DNA dynamics: a new model”, Physics Letters A, 136 (1989), 413–417 | DOI

[55] Dauxois T., Peyrard M., Bishop A. R., “Entropy-driven DNA denaturation”, Physical Review E, 47 (1993), R44–R47 | DOI

[56] Choi C. H., Kalosakas G., Rasmussen K. O., Hiromura M., Bishop A. R., Usheva A., “DNA dynamically directs its own transcription initiation”, Nucleic Acids Research, 32 (2004), 1584–1590 | DOI

[57] Kalosakas G., Ransmussen K. O., Bishop A. R., Choi C. H., Usheva A., “Sequence-specific thermal fluctuations identify start sites for DNA transcription”, Europhysics Letters, 68 (2004), 127–133 | DOI