\emph{In Silico} Cell: Challenges and Perspectives
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 295-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article provides an overview of researches on the in silico cell development. In silico cell or e-cell is an informational and computational resource to simulate the full-scale metabolism of the cell taking into account the processes of genetic regulation as well as mechanisms of cell growth and division. There are also highlighted the key challenges for its development and existing approaches to its solution, including designed and developed at the Institute of Cytology and Genetics, SB RAS.
@article{MBB_2013_8_1_a16,
     author = {I. R. Akberdin and F. V. Kazantsev and T. V. Ermak and V. S. Timonov and T. M. Khlebodarova and V. A. Likhoshvai},
     title = {\emph{In {Silico}} {Cell:} {Challenges} and {Perspectives}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {295--315},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a16/}
}
TY  - JOUR
AU  - I. R. Akberdin
AU  - F. V. Kazantsev
AU  - T. V. Ermak
AU  - V. S. Timonov
AU  - T. M. Khlebodarova
AU  - V. A. Likhoshvai
TI  - \emph{In Silico} Cell: Challenges and Perspectives
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 295
EP  - 315
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a16/
LA  - ru
ID  - MBB_2013_8_1_a16
ER  - 
%0 Journal Article
%A I. R. Akberdin
%A F. V. Kazantsev
%A T. V. Ermak
%A V. S. Timonov
%A T. M. Khlebodarova
%A V. A. Likhoshvai
%T \emph{In Silico} Cell: Challenges and Perspectives
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 295-315
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a16/
%G ru
%F MBB_2013_8_1_a16
I. R. Akberdin; F. V. Kazantsev; T. V. Ermak; V. S. Timonov; T. M. Khlebodarova; V. A. Likhoshvai. \emph{In Silico} Cell: Challenges and Perspectives. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 295-315. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a16/

[1] Watson J. D., Crick F. H., “Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid”, Nature, 171 (1953), 737–738 | DOI

[2] Jacob F., Monod J., “Genetic regulatory mechanisms in the synthesis of proteins”, J. Mol. Biol., 3 (1961), 318–356 | DOI

[3] Palsson B., “The challenges of in silico biology”, Nat. Biotechnol., 18 (2000), 1147–1150 | DOI

[4] Evans G. A., “Designer science and the “omic” revolution”, Nat. Biotechnol., 18 (2000), 127 | DOI

[5] Kitano H., Foundations of Systems biology, MIT Press, 2001, 290 pp.

[6] Klipp E., Liebermeister W., Wierling C., Kowald A., Lehrach H., Herwig R., Systems Biology: a Textbook, 2009, 592 pp.

[7] Tomita M., Hashimoto K., Takahashi K., Shimizu T. S., Matsuzaki Y., Miyoshi F., Saito K., Tanida S., Yugi K., Venter J. C., Hutchison C. A., “E-CELL: Software Environment for Whole Cell Simulation”, Genome Inform. Workshop Ser. Genome Inform., 8 (1997), 147–155

[8] Karr J. R., Sanghvi J. C., Macklin D. N., Gutschow M. V., Jacobs J. M., Bolival Jr. B., Assad-Garcia N., Glass J. I., Covert M. W., “A whole-cell computational model predicts phenotype from genotype”, Cell, 150 (2012), 389–401 | DOI

[9] Shuler M. L., Foley P., Atlas J., “Modeling a minimal cell”, Meth. Mol Biol., 881 (2012), 573–610 | DOI

[10] Gavin T., “Escherichia coli: model and menace”, Microbiology today, 31 (2004), 114–115 | MR

[11] Glasner J., Perna N., “Comparative genomics of E. coli”, Microbiology today, 31 (2004), 124–125

[12] Cooper S., Helmstetter C. E., “Chromosome Replication and the Division Cycle of Escherichia coli B/r”, J. Mol. Biol., 31 (1968), 619–644 | DOI

[13] Pritchard R. H., Barth P. T., Collins J., “Control of DNA synthesis in bacteria”, Microbial Growth, Symposium of Society of General Microbiology, 19 (1969), 263–297

[14] Zaritsky A., Vischer N., Rabinovitch A., “Changes of initiation mass and cell dimensions by the ‘eclipse’”, Mol. Microbiol., 63:1 (2007), 15–21 | DOI

[15] Zaritsky A., Wang P., Vischer N. O., “Instructive simulation of the bacterial cell division cycle”, Microbiology, 157:7 (2011), 1876–1885 | DOI

[16] Drozdov-Tikhomirov L. N., Scurida G. I., Serganova V. V., “Inner metabolic fluxes in multienzyme systems: Lysine synthesis on acetate by Clostridium acetobutylicum”, Biotechnologia (Moskow), 2 (1986), 28–37

[17] Drozdov-Tikhomirov L. N., Scurida G. I., Davidov A. V., Alexandrov A. A., Zvyagilskaya R. A., “Mathematical modeling of living cell metabolism using the method of steady-state stoichiometric flux balance”, J. Bioinform. Comput. Biol., 4 (2006), 865–885 | DOI

[18] Varma A., Palsson B. O., “Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110”, Appl. Environ. Microbiol., 60:10 (1994), 3724–3731

[19] Nazipova N. N., Elkin Yu. E., Panyukov V. V., Drozdov-Tikhomirov L. N., “Raschet skorostei metabolicheskikh reaktsii v zhivoi kletke metodom balansa statsionarnykh metabolicheskikh potokov (metod BSMP)”, Matem. biologiya i bioinform., 2 (2007), 98–119

[20] Llaneras F., Pico J., “Stoichiometric modeling of cell metabolism”, J. Biosci. Bioeng., 105 (2008), 1–11 | DOI

[21] Edwards J. S., Palsson B. O., “The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities”, PNAS, 97:10 (2000), 5528–5533 | DOI

[22] Reed J. L., Palsson B. O., “Thirteen Years of Building Constraints-Based in silico Models of Escherichia coli”, J. Bacteriol., 185:9 (2003), 2692–2699 | DOI

[23] Kim J. I., Varner J. D., Ramkrishna D., “A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables”, Biotechnol. Prog., 24:5 (2008), 993–1006 | DOI

[24] Covert M. W., Xiao N., Chen T. J., Karr J. R., “Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli”, Bioinformatics, 24:18 (2008), 2044–2050 | DOI

[25] Edwards J. S., Ibarra R. U., Palsson B. O., “In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data”, Nat. Biotechnol., 19 (2001), 125–130 | DOI

[26] Van Dien S. J., Iwatani S., Usuda Y., Matsui K., “Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression”, J. Biosci. Bioeng., 102 (2006), 34–40 | DOI

[27] Shuler M. L., Leung S., Dick C. C., “A mathematical model for the growth of a single bacterial cell”, Ann. N. Y. Acad. Sci., 326:1 (1979), 35–52 | DOI

[28] Domach M. M., Leung S. K., Cahn R. E., Cocks G. G., Shuler M. L., “Computer-model for glucose-limited growth of a single cell of Escherichia coli b/R-A”, Biotechnol. Bioeng, 26 (1984), 203–216 | DOI

[29] Shuler M. L., “Single-cell models: Promise and limitations”, J. Biotechnol., 71 (1999), 225–228 | DOI

[30] Browning S. T., Shuler M. L., “Towards the development of a minimal cell model by generalization of a model of Escherichia coli: Use of dimensionless rate parameters”, Biotechnol. Bioeng., 76 (2001), 187–192 | DOI

[31] Browning S. T., Castellanos M., Shuler M. L., “Robust control of initiation of prokaryotic chromosome replication: essential considerations for a minimal cell”, Biotechnol. Bioeng., 88:5 (2004), 575–584 | DOI

[32] Peterson S. N., Hu P. C., Bott K. F., Hutchison C. A. 3rd., “A survey of the Mycoplasma genitalium genome by using random sequencing”, J. Bacteriol., 175:24 (1993), 7918–7930

[33] Holden C., “Cell biology. Alliance launched to model E. coli”, Science, 297:5586 (2002), 1459–1460 | DOI

[34] Snoep J. L., “The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level”, Curr. Opin. Biotechnol., 16:3 (2005), 336–343 | DOI | MR

[35] Ruckenstein E., Simon Z., “Regulation and synthesis in the living cell. I: Kinetics of ribonucleic acid synthesis”, J. Theor. Biol., 11:2 (1966), 282–298 | DOI

[36] Churaev R. N., Ratner V. A., “Modelirovanie molekulyarno-geneticheskikh sistem upravleniya na yazyke teorii avtomatov, I”, Operony i operonnye sistemy Issledovaniya po teoreticheskoi genetike, ITsiG SO AN SSSR, Novosibirsk, 1972, 210–228

[37] Likhoshvai V. A., Matushkin Yu. G., Vatolin Yu. N., Bazhan S. I., “A generalized chemical kinetic method for simulating complex biological systems. A computer model of $\lambda$ phage ontogenesis”, Comput. Technol., 5:2 (2000), 87–99 | MR

[38] Covert M. W., Knight E. M., Reed J. L., Herrgard M. J., Palsson B. O., “Integrating high-throughput and computational data elucidates bacterial networks”, Nature, 429 (2004), 92–96 | DOI

[39] Thiele I., Jamshidi N., Fleming R. M., Palsson B. O., “Genome scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization”, PLoS Comput. Biol., 5:3 (2009), e1000312 | DOI | MR

[40] Orth J. D., Conrad T. M., Na J., Lerman J. A., Nam H., Feist A. M., Palsson B. O., “A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011”, Mol. Syst. Biol., 7 (2011), 535 | DOI

[41] Glass L., “Combinatorial and topological methods in nonlinear chemical kinetics”, J. Chem. Phys., 63:4 (1975), 1325–1335 | DOI

[42] Edwards R., “Analysis of continuous-time switching networks”, Physica D, 146 (2000), 165–199 | DOI | MR | Zbl

[43] Kauffman S., “Metabolic stability and epigenesis in randomly constructed genetic net”, J. Theor. Biol., 22:3 (1969), 437–467 | DOI

[44] Thomas R., “Boolean formalization of genetic control circuits”, J. Theor. Biol., 42:3 (1973), 563–585 | DOI

[45] Mestl T., Plahte E., Omholt S. W., “A mathematical framework for describing and analysing gene regulatory networks”, J. Theor. Biol., 176:2 (1995), 291–300 | DOI | MR

[46] Endy D., Kong D., Yin J., “Intracellular kinetics of a growing virus: a genetically structured simulation for bacteriophage T7”, Biotechnol. Bioeng., 55:2 (1997), 375–389 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[47] Smolen P., Baxter D. A., Byrne J. H., “Modeling transcriptional control in gene networks — methods, recent results, and future directions”, Bull. Math. Biol., 62:2 (2000), 247–292 | DOI

[48] Covert M. W., Palsson B. O., “Constraints-based models: regulation of gene expression reduces the steady-state solution space”, J. Theor. Biol., 221:3 (2003), 309–325 | DOI | MR

[49] Gillespie D., “Exact stochastic simulation of coupled chemical reactions”, J. Phys. Chem., 81 (1977), 2340–2361 | DOI

[50] McAdams H. H., Arkin A., “Stochastic mechanisms in gene expression”, Proc. Nat. Acad. Sci. USA, 94:3 (1997), 814–819 | DOI

[51] Yanenko N. N., Metod drobnykh shagov dlya resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 167 pp.

[52] Gear C. W., “The automatic integration of ordinary differential equations”, Communs. ACM, 14 (1971), 176–190 | DOI | MR

[53] Butcher J. C., Numerical methods for ordinary differential equations, Wiley, 2008 | MR | Zbl

[54] Elowitz M. B., Levine A. J., Siggia E. D., Swain P. S., “Stochastic gene expression in a single cell”, Science, 297 (2002), 1183–1186 | DOI

[55] Berthoumieux S., de Jong H., Baptist G., Pinel C., Ranquet C., Ropers D., Geiselmann J., “Shared control of gene expression in bacteria by transcription factors and global physiology of the cell”, Mol. Syst. Biol., 9 (2013), 634 | DOI

[56] Dennis P., Ehrenberg M., Bremer H., “Control of rRNA synthesis in Escherichia coli: a systems biology approach”, Microbiol. Mol. Biol. Rev., 68 (2004), 639–668 | DOI

[57] Maaloe O., Kjeldgaard N. O., Control of macromolecular synthesis: a study of DNA, RNA, and protein synthesis in bacteria, v. 4, WA Benjamin, New York, 1966

[58] Scott M., Hwa T., “Bacterial growth laws and their applications”, Curr. Opin. Biotechnol., 22:4 (2011), 559–565 | DOI

[59] Sundararaj S., Guo A., Habibi-Nazhad B., Rouani M., Stothard P., Ellison M., Wishart D. S., “The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli”, Nucl. Acids Res., 32 (2004), D293–D295 | DOI

[60] Schulz M., Krause F., Le Novere N., Klipp E., Liebermeister W., “Retrieval, alignment, and clustering of computational models based on semantic annotations”, Mol. Syst. Biol., 7 (2011), 512 | DOI

[61] Courtot M., Juty N., Knupfer C., Waltemath D., Zhukova A., Dräger A., Dumontier M., Finney A., Golebiewski M., Hastings J. et al., “Controlled vocabularies and semantics in systems biology”, Mol. Syst. Biol., 7 (2011), 543 | DOI

[62] Blattner F. R., Plunkett G. III, Bloch C., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. et al., “The complete genome sequence of Escherichia coli K-12”, Science, 277:5331 (1997), 1453–1462 | DOI

[63] “C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology”, Science, 282:5396 (1998), 2012–2018 | DOI

[64] Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. et al., “The genome sequence of Drosophila melanogaster”, Science, 287:5461 (2000), 2185–2195 | DOI

[65] Bakstad D., Adamson A., Spiller D. G., White M. R. H., “Quantitative measurement of single cell dynamics”, Curr. Opin. Biotechnol., 23 (2012), 103–109 | DOI

[66] Dubuis J. O., Samanta R., Gregor T., “Accurate measurements of dynamics and reproducibility in small genetic networks”, Mol. Syst. Biol., 9 (2013), 639 | DOI

[67] Hanley M. B., Lomas W., Mittar D., Maino V., Park E., “Detection of Low Abundance RNA Molecules in Individual Cells by Flow Cytometry”, PLoS ONE, 8:2 (2013), e57002 | DOI

[68] Elowitz M. B., Leibler S., “A synthetic oscillatory network of transcriptional regulators”, Nature, 403:6767 (2000), 335–338 | DOI

[69] Kauffman S. A., The origins of order: self-organization and selection in evolution, Oxford Univ. Press, N. Y., 1993, 223 pp.

[70] Graudenzi A., Serra R., Villani M., Damiani C., Colacci A., Kauffman S. A., “Dynamical properties of a Boolean model of gene regulatory network with memory”, J. Comput. Biol., 18:10 (2011), 1291–1303 | DOI | MR

[71] Thomas R., Thieffry D., Kaufman M., “Dynamical behavior of biological regulatory networks. I: Biological role of feedback loops and practical use of the concept of the loop-characteristic state”, Bull. Math. Biol., 57:2 (1995), 247–276 | Zbl

[72] Thieffry D., Thomas R., “Qualitative analysis of gene networks”, Pac. Symp. Biocomput., 1998, 77–88

[73] Friedman N., Linial M., Nachman I., Peer D., “Using Bayesian networks to analyze expression data”, J. Comput. Biol., 7 (2000), 601–620 | DOI

[74] Ong I. M., Glasner J. D., Page D., “Modelling regulatory pathways in E. coli from time series expression profiles”, Bioinformatics, 18:1 (2002), 241–248

[75] Perrin B. E., Ralaivola L., Mazurie A., Bottani S., Mallet J., d'Alche-Buc F., “Gene networks inference using dynamic Bayesian networks”, Bioinformatics, 2003, no. 2, 138–148 | MR

[76] Hofestadt R., Meineke F., “Interactive modelling and simulation of biochemical networks”, Comput. Biol. Med., 25:3 (1995), 321–334 | DOI

[77] Soliman S., “Invariants and Other Structural Properties of Biochemical Models as a Constraint Satisfaction Problem”, Algorithms Mol. Biol., 7:1 (2012), 15 | DOI

[78] Bazhan S. I., Likhoshvay V. A., Belova O. E., “Theoretical analysis of the regulation of interferon expression during priming and blocking”, J. Theor. Biol., 175 (1995), 149–160 | DOI

[79] Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Zadachi teorii funktsionirovaniya gennykh setei”, Zhurnal industrialnoi matematiki, 6 (2003), 64–80 | MR

[80] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie mnogostadiinogo sinteza veschestva bez vetvleniya uravneniem s zapazdyvayuschim argumentom”, Sibirskii zhurnal industrialnoi matematiki, 7:1 (2004), 73–94 | MR | Zbl

[81] Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Matematicheskoe modelirovanie regulyarnykh konturov gennykh setei”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:10 (2004), 1921–1940 | MR

[82] McAdams H., Arkin A., “Simulation of prokaryotic genetic circuits”, Ann. Rev. Biophys. Biomed. Struct., 27 (1998), 199–224 | DOI

[83] Turner T. E., Schnell S., Burrage K., “Stochastic approaches for modelling in vivo reactions”, Comput. Biol. Chem., 28:3 (2004), 165–178 | DOI | Zbl

[84] Ocone A., Millar A. J., Sanguinetti G., “Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics”, Bioinformatics, 2013 | DOI

[85] Funahashi A., Morohashi M., Kitano H., Tanimura N., “CellDesigner: a process diagram editor for gene-regulatory and biochemical networks”, Biosilico, 1:5 (2003), 159–162 | DOI

[86] Gizzatkulov N. M., Goryanin I. I., Metelkin E. A., Mogilevskaya E. A., Peskov K. V., Demin O. V., “DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results”, BMC Syst. Biol., 4:109 (2010), 1–11

[87] Moraru I. I., Schaff J. C., Slepchenko B. M., Loew L. M., “The virtual cell”, Ann. N. Y. Acad. Sci., 971:1 (2002), 595–596 | DOI

[88] Shapiro B. E., Levchenko A., Meyerowitz E. M., Wold B. J., Mjolsness E. D., “Cellerator: extending a computer algebra systems to include biochemical arrows for signal transduction simulations”, Bioinformatics, 19:5 (2003), 677–678 | DOI

[89] Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B., Ideker T., “Cytoscape: a software environment for integrated models of biomolecular interaction networks”, Genome research, 13:11 (2003), 2498–2504 | DOI

[90] Wegner K., Knabe J., Robinson M., Egri-Nagy A., Schilstra M., Nehaniv C., “The NetBuilder'project: development of a tool for constructing, simulating, evolving, and analysing complex regulatory networks”, BMC Syst. Biol., 1:1 (2007), 72

[91] Lee D. Y., Yun C., Cho A., Hou B. K., Park S., Lee S. Y., “WebCell: a web-based environment for kinetic modeling and dynamic simulation of cellular networks”, Bioinformatics, 22:9 (2006), 1150–1151 | DOI

[92] Hucka M., Finney A., Sauro H. M., Bolouri H., Doyle J. C., Kitano H., Arkin A. P., Bornstein B. J., Bray D., Cornish-Bowden A. et al., “The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models”, Bioinformatics, 19:4 (2003), 524–531 | DOI

[93] Drager A., Hassis N., Supper J., Schroder A., Zell A., “SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks”, BMC Syst. Biol., 2:1 (2008), 39 | DOI

[94] Wrzodek C., Buchel F., Ruff M., Drager A., Zell A., “Precise generation of systems biology models from KEGG pathways”, BMC Syst. Biol., 7:1 (2013), 15 | DOI

[95] Takizawa H., Nakamura K., Tabira A., Chikahara Y., Matsui T., Hiroi N., Funahashi A., “LibSBMLSim: A reference implementation of fully functional SBML simulator”, Bioinformatics, 2013 | DOI

[96] Calzone L., Fages F., Soliman S., “BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge”, Bioinformatics, 22:14 (2006), 1805–1807 | DOI

[97] Adams R., Clark A., Yamaguchi A., Hanlon N., Tsorman N., Ali S., Lebedeva G., Goltsov A., Sorokin A., Akman O. E. et al., “SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology”, Bioinformatics, 29 (2013), 664–665 | DOI

[98] Sutterlin T., Kolb C., Dickhaus H., Jager D., Grabe N., “Bridging the scales: semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI”, Bioinformatics, 29:2 (2013), 223–229 | DOI

[99] Berkhout J., Teusink B., Bruggeman F. J., “Gene network requirements for regulation of metabolic gene expression to a desired state”, Sci. Rep., 3 (2013), 1417 | DOI

[100] Li C., Donizelli M., Rodriguez N., Dharuri H., Endler L., Chelliah V., Li L., He E., Henry A., Stefan M. I. et al., “BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models”, BMC Syst. Biol., 4 (2010), 92 | DOI

[101] Lloyd C. M., Lawson J. R., Hunter P. J., Nielsen P. F., “The CellML Model Repository”, Bioinformatics, 24:18 (2008), 2122–2123 | DOI | MR

[102] Olivier B. G., Snoep J. L., “Web-based kinetic modelling using JWS Online”, Bioinformatics, 20 (2004), 2143–2144 | DOI

[103] Sivakumaran S., Hariharaputran S., Mishra J., Bhalla U. S., “The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks”, Bioinformatics, 19 (2003), 408–415 | DOI

[104] Moutselos K., Kanaris I., Chatziioannou A., Maglogiannis I., Kolisis F. N., “KEGGconverter: a tool for the in-silico modelling of metabolic networks of the KEGG Pathways database”, BMC Bioinformatics, 10 (2009), 324 | DOI

[105] Rojas I., Golebiewski M., Kania R., Krebs O., Mir S., Weidemann A., Wittig U., “SABIO-RK: a database for biochemical reactions and their kinetics”, BMC Syst. Biol., 1 (2007), S6 | DOI

[106] Forster A. C., Church G. M., “Towards synthesis of a minimal cell”, Mol. Syst. Biol., 2:1 (2006) | DOI | Zbl

[107] Stano P., “Advances in minimal cell models: A new approach to synthetic biology and origin of life”, Progress in Molecular and Environmental Bioengineering — From Analysis and Modeling to Technology Applications, ed. A. Rijeka, Carpi. Intech — Open Access Publisher, Croatia, 2011 23–44 | Zbl

[108] Noble D., “Modeling the heart from genes to cells to the whole organ”, Sci. Signal., 295:5560 (2002), 1678

[109] Lewis N. E., Schramm G., Bordbar A., Schellenberger J., Andersen M. P., Cheng J. K., Patel N., Yee A., Lewis R. A., Eils R., König R., Palsson B. Ø., “Formulating multicellular models of metabolism in tissues: application to energy metabolism in the human brain”, Nat. Biotechnol., 28:12 (2010), 1279 | DOI

[110] Gardner T. S., Cantor C. R., Collins J. J., “Construction of a genetic toggle switch in Escherichia coli”, Nature, 403:6767 (2000), 339–342 | DOI

[111] Tchuraev R. N., Stupak I. V., Tropynina T. S., Stupak E. E., “Epigenes: design and construction of new hereditary units”, FEBS letters, 486:3 (2000), 200 | DOI

[112] Hasty J., Dolnik M., Rottschafer V., Collins J. J., “Synthetic gene network for entraining and amplifying cellular oscillations”, Phys. Rev. Letters, 88:14 (2002), 148101 | DOI

[113] Atkinson M. R., Savageau M. A., Myers J. T., Ninfa A. J., “Development of Genetic Circuitry Exhibiting Toggle Switch or oscillatory behavior in Escherichia coli”, Cell, 113:5 (2003), 597–607 | DOI

[114] Feng X. J., Hooshangi S., Chen D., Li G., Weiss R., Rabitz H., “Optimizing genetic circuits by global sensitivity analysis”, Biophys. J., 87:4 (2004), 2195–2202 | DOI

[115] Golubyatnikov V., Likhoshvai V., Fadeev S., Matushkin Yu., Ratushny A., Kolchanov N., “Mathematical and Computer modeling of genetic networks”, Proceedings of the 6-th International Conference Human and Computer, HC-2003 (Japan, University of Aizu, 2003), 200–205

[116] Reich J. G., Sel'kov E. E., “Mathematical analysis of metabolic networks”, FEBS Letters, 40 (1974), S119–S127 | DOI

[117] Ivanitskii G. R., Krinskii V. I., Selkov E. E., Matematicheskaya biofizika kletki, Nauka, M., 1978, 156 pp.

[118] Sel'kov E., “On the mechanism of single-frequency self-oscillations in glycolysis. I: A simple kinetic model”, Eur. J. Biochem., 4:1 (1968), 79–86 | DOI

[119] Shevelev E. L., Sel'kov E. E., “Concentration hierarchy in the mathematical model of fructose-2,6-bisphosphate exchange”, Mol. Biol., 22:2 (1988), 459–465

[120] Popova S. V., Selkov E. E., “Regulyatornye obratimye fermentativnye reaktsii. Teoreticheskii analiz”, Mol. biol., 12 (1978), 1139–1151

[121] Sel'kov E., Basmanova S., Gaasterland T., Goryanin I., Gretchkin Y., Maltsev N., Nenashev V., Overbeek R., Panyushkina E., Pronevitch L., Selkov E. (Jr.), Yunus I., “The Metabolic Pathway Collection from EMP: The Enzymes and Metabolic Pathways Database”, Nucl. Acids Res., 24:1 (1996), 26–28 | DOI

[122] Sel'kov E. (Jr.), Grechkin Y., Mikhailova N., Sel'kov E., “MPW: the Metabolic Pathways Database”, Nucl. Acids Res., 26:1 (1998), 43–45 | DOI

[123] Demin O. V., Goryanin I. I., Dronov S., Lebedeva G. V., “Kinetic model of imidazologlycerol-phosphate synthetase from Escherichia coli”, Biochemistry (Mosc)., 69:12 (2004), 1324–1335 | DOI

[124] Demin O. V., Plyusnina T. Y., Lebedeva G. V., Zobova E. A., Metelkin E. A., Kolupaev A. G., Goryanin I. I., Tobin F., “Kinetic modelling of the E. coli metabolism”, Systems Biology, Springer, Berlin–Heidelberg, 2005, 31–67 | DOI

[125] Peskov K., Goryanin I., Prank K., Tobin F., Demin O., “Kinetic modeling of ace operon genetic regulation in Escherichia coli”, J. Bioinform. Comput. Biol., 5 (2008), 933–959 | DOI

[126] Peskov K., Mogilevskaya E., Demin O., “Kinetic modelling of central carbon metabolism in Escherichia coli”, FEBS J., 279:18 (2012), 3374–3385 | DOI

[127] Metelkin E., Lebedeva G., Goryanin I., Demin O., “Kineticheskaya model beta-galaktozidazy Escherichia coli”, Biofizika, 54 (2009), 226–234

[128] Ratner V. A., Geneticheskie sistemy upravleniya, Nauka, Novosibirsk, 1966

[129] Belova O. E., Likhoshvai V. A., Bazhan S. I., Kulichkov V. A., “Computer system for investigation and integrated description of molecular-genetic system regulation of interferon induction and action”, Comput. Appl. Biosci., 11:2 (1995), 213–218

[130] Ratushnyi A. V., Likhoshvai V. A., Ignateva E. V., Matushkin Yu. G., Goryanin I. I., Kolchanov N. A., “Kompyuternaya model gennoi seti regulyatsii biosinteza kholesterina v kletke: analiz vliyaniya mutatsii”, Dokl. Akad. Nauk, 389 (2003), 90–93

[131] Akberdin I. R., Ozonov E. A., Mironova V. V., Omelyanchuk N. A., Likhoshvai V. A., Gorpinchenko D. N., Kolchanov N. A., “A cellular automation to model the development of primary shoot meristems of Arabidopsis thaliana”, J. Bioinform. Comput. Biol., 5:2b (2007), 641–650 | DOI

[132] Oshchepkova-Nedosekina E. A., Likhoshvai V. A., “A mathematical model for the adenylosuccinate synthetase reaction involved in purine biosynthesis”, Theor. Biol. Med. Model., 4 (2007), 11 | DOI

[133] Akberdin I. R., Kazantsev F. V., Omelyanchuk N. A., Likhoshvai V. A., “Matematicheskoe modelirovanie metabolizma auksina v kletke meristemy pobega rasteniya”, Vavilovskii zhurnal genetiki i selektsii, 13 (2009), 170–176

[134] Mironova V. V., Omelyanchuk N. A., Yosiphon G., Fadeev S. I., Kolchanov N. A., Mjolsness E., Likhoshvai V. A., “How acropetal auxin flow determines cell fate specification along the central axis in root development”, BMC Syst. Biol., 4 (2010), 98 | DOI

[135] Likhoshvai V. A., Khlebodarova T. M., “Soglasovanie tempov rosta ob'ema kletki i replikatsii DNK: matematicheskaya model”, Matem. biologiya i bioinform., 8:1 (2013), 66–92 | MR

[136] Khlebodarova T. M., Kogai V. V., Akberdin I. R., Fadeev S. I., Ri N. A., Likhoshvai V. A., “Modelirovanie utilizatsii nitrita kletkami Escherichia coli: analiz potokov”, Matem. biologiya i bioinform., 8:1 (2013), 268–286

[137] Churaev R. N., Ratner V. A., “Modelirovanie dinamiki sistemy upravleniya razvitiem $\alpha$-faga”, Issledovaniya po teoreticheskoi genetike, ITsiG SO AN SSSR, Novosibirsk, 1975, 5–66

[138] Likhoshvai V. A., Matushkin Yu. G., Ratushnyi A. V., Ananko E. A., Ignateva E. V., Podkolodnaya O. V., “Obobschennyi khimiko-kineticheskii metod modelirovaniya gennykh setei”, Mol. Biol., 35 (2001), 1072–1079

[139] Likhoshvai V., Ratushny A., “Generalized Hill function method for modeling molecular processes”, J. Bioinform. Comput. Biol., 5:2 (2007), 521–531 | DOI

[140] Ratushnyi A. V., Likhoshvai V. A., Ananko E. A., Vladimirov N. V., Gunbin K. V., Lashin S. A., Nedosekina E. A., Nikolaev S. V., Omelyanchuk L. V., Matushkin Yu. G., Kolchanov N. A., “Novosibirskaya shkola sistemnoi kompyuternoi biologii: istoricheskii ekskurs i perspektivy razvitiya”, Vestnik VOGiS, 9 (2005), 232–261

[141] Likhoshvai V. A., Kazantsev F. V., Akberdin I. R., Bezmaternykh K. D., Programma avtomaticheskoi generatsii matematicheskikh modelei gennykh setei (MGSgenerator), avtorskoe svidetelstvo No 2008611941, aprel 2008a

[142] Kazantsev F. V., Akberdin I. R., Bezmaternykh K. D., Likhoshvai V. A., “Sistema avtomatizirovannoi generatsii matematicheskikh modelei gennykh setei”, Vavilovskii zhurnal genetiki i selektsii, 13 (2009), 163–170

[143] Likhoshvai V. A., Kazantsev F. V., Akberdin I. R., Bezmaternykh K. D., Lashin S. A., Podkolodnaya N. N., Ratushnyi A. V., Kompyuternaya sistema dlya konstruirovaniya, rascheta i analiza modelei molekulyarno-geneticheskikh sistem (MGSmodeller), avtorskoe svidetelstvo No 2008612820, iyun 2008b

[144] Ananko E. A., Podkolodny N. L., Stepanenko I. L., Podkolodnaya O. A., Rasskazov D. A., Miginsky D. S., Likhoshvai V. A., Ratushny A. V., Podkolodnaya N. N., Kolchanov N. A., “GeneNet in 2005”, Nucl. Acids Res., 1:33 (2005), 425–427

[145] Lakhno V., Nazipova N., Kim V., Filippov S., Fialko N., Ustinin D., Teplukhin A., Tyulbasheva G., Zaitsev A., Ustinin M., “Informatsionno-vychislitelnaya sreda Mathcell dlya modelirovaniya zhivoi kletki”, Matem. biologiya i bioinform., 2:2 (2007), 361–376