Modeling of Nitrite Utilization in \emph{E. coli} Cells: Flux Analysis
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 276-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the model analysis are presented in the article. The model describes of nitrite utilization in E. coli cell under continuous cultivation in the chemostat. The model takes into account expression dynamics of nrf and nir operons encoding the structure of enzymes that participate in the nitrite' metabolism and transport. It has shown that the model adapted to the known data describes experimentally observed dynamics of the nitrite accumulation in the chemostat at millimolar concentrations of added nitrite without supplementary hypothesis. In the concentration area the permanent intracellular nitrite concentration which does not depend on its concentration in the growth environment is maintained in accordance to the model. To describe the kinetics of nitrite accumulation in the chemostat at micromolar concentrations of added nitrite the supplementary hypothesis about the existence of more high level of NrfA enzymatic activity than it observes in the genetic studies is required to be included in the model.
@article{MBB_2013_8_1_a15,
     author = {T. M. Khlebodarova and V. V. Kogai and I. R. Akberdin and N. A. Ri and S. I. Fadeev and V. A. Likhoshvai},
     title = {Modeling of {Nitrite} {Utilization} in {\emph{E.} coli} {Cells:} {Flux} {Analysis}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {276--294},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a15/}
}
TY  - JOUR
AU  - T. M. Khlebodarova
AU  - V. V. Kogai
AU  - I. R. Akberdin
AU  - N. A. Ri
AU  - S. I. Fadeev
AU  - V. A. Likhoshvai
TI  - Modeling of Nitrite Utilization in \emph{E. coli} Cells: Flux Analysis
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 276
EP  - 294
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a15/
LA  - ru
ID  - MBB_2013_8_1_a15
ER  - 
%0 Journal Article
%A T. M. Khlebodarova
%A V. V. Kogai
%A I. R. Akberdin
%A N. A. Ri
%A S. I. Fadeev
%A V. A. Likhoshvai
%T Modeling of Nitrite Utilization in \emph{E. coli} Cells: Flux Analysis
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 276-294
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a15/
%G ru
%F MBB_2013_8_1_a15
T. M. Khlebodarova; V. V. Kogai; I. R. Akberdin; N. A. Ri; S. I. Fadeev; V. A. Likhoshvai. Modeling of Nitrite Utilization in \emph{E. coli} Cells: Flux Analysis. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 276-294. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a15/

[1] Page L., Griffiths L., Cole J. A., “Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria”, Arch. Microbiol., 154 (1990), 349–354 | DOI | MR

[2] Wang H., Gunsalus R. P., “The nrfA and nirB nitrite reductase operons in Escherichia coli are expressed differently in response to nitrate than to nitrite”, J. Bacteriol., 182 (2000), 5813–5822 | DOI

[3] Clegg S., Yu F., Griffiths L., Cole J. A., “The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters”, Mol. Microbiol., 44 (2002), 143–155 | DOI

[4] Jia W., Tovell N., Clegg S., Trimmer M., Cole J., “A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake”, Biochem. J., 417 (2009), 297–304 | DOI

[5] Wang H., Tseng C. P., Gunsalus R. P., “The napF and narG nitrate reductase operons in Escherichia coli are differentially expressed in response to submicromolar concentrations of nitrate but not nitrite”, J. Bacteriol., 181 (1999), 5303–5308

[6] Clarke T. A., Kemp G. L., Van Wonderen J. H., Doyle R. M., Cole J. A., Tovell N., Cheesman M. R., Butt J. N., Richardson D. J., Hemmings A. M., “Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase”, Biochemistry, 47:12 (2008), 3789–3799 | DOI

[7] van Wonderen J. H., Burlat B., Richardson D. J., Cheesman M. R., Butt J. N., “The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli”, J. Biol. Chem., 283 (2008), 9587–9594 | DOI

[8] Kemp G. L., Clarke T. A., Marritt S. J., Lockwood C., Poock S. R., Hemmings A. M., Richardson D. J., Cheesman M. R., Butt J. N., “Kinetic and thermodynamic resolution of the interactions between sulfite and the pentahaem cytochrome NrfA from Escherichia coli”, Biochem. J., 431 (2010), 73–80 | DOI

[9] Clarke T. A., Cole J. A., Richardson D. J., Hemmings A. M., “The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA”, Biochem. J., 406 (2007), 19–30 | DOI

[10] Lockwood C., Butt J. N., Clarke T. A., Richardson D. J., “Molecular interactions between multihaem cytochromes: probing the protein-protein interactions between pentahaem cytochromes of a nitrite reductase complex”, Biochem. Soc. Trans., 39 (2011), 263–268 | DOI

[11] Clarke T. A., Dennison V., Seward H. E., Burlat B., Cole J. A., Hemmings A. M., Richardson D. J., “Purification and spectropotentiometric characterization of Escherichia coli NrfB, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex”, J. Biol. Chem., 279 (2004), 41333–41339 | DOI

[12] Coleman K. J., Cornish-Bowden A., Cole J. A., “Activation of nitrite reductase from Escherichia coli K12 by oxidized nicotinamide-adenine dinucleotide”, Biochem. J., 175 (1978), 495–499

[13] Jackson R. H., Cole J. A., Cornish-Bowden A., “The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction”, Biochem. J., 199 (1981), 171–178

[14] Harborne N. R., Griffiths L., Busby S. J., Cole J. A., “Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon”, Mol. Microbiol., 6 (1992), 2805–2813 | DOI

[15] Coleman K. J., Cornish-Bowden A., Cole J. A., “Purification and properties of nitrite reductase from Escherichia coli K12”, Biochem. J., 175 (1978), 483–493

[16] Poock S. R., Leach E. R., Moir J. W., Cole J. A., Richardson D. J., “Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli”, J. Biol. Chem., 277 (2002), 23664–23669 | DOI

[17] Angove H. C., Cole J. A., Richardson D. J., Butt J. N., “Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome C nitrite reductase”, J. Biol. Chem., 277 (2002), 23374–23381 | DOI

[18] Wright D. N., Lockhart W. R., “Environmental control of cell composition in Escherichia coli”, J. Bacteriol., 89 (1965), 1026–1031

[19] Lü W., Schwarzer N. J., Du J., Gerbig-Smentek E., Andrade S. L., Einsle O., “Structural and functional characterization of the nitrite channel NirC from Salmonella typhimurium”, Proc. Natl. Acad. Sci. USA, 109 (2012), 18395–18400 | DOI

[20] Talmadge K., Gilbert W., “Cellular location affects protein stability in Escherichia coli”, Proc. Natl. Acad. Sci. USA, 79 (1982), 1830–1833 | DOI

[21] Jia W., Cole J. A., “Nitrate and nitrite transport in Escherichia coli”, Biochem. Soc. Trans., 33 (2005), 159–161 | DOI

[22] Clegg S. J., Jia W., Cole J. A., “Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth”, Microbiology, 152 (2006), 2091–2100 | DOI

[23] Kolesnikow T., Schröder I., Gunsalus R. P., “Regulation of narK gene expression in Escherichia coli in response to anaerobiosis, nitrate, iron, and molybdenum”, J. Bacteriol., 174 (1992), 7104–7111

[24] DeMoss J. A., Hsu P. Y., “NarK enhances nitrate uptake and nitrite excretion in Escherichia coli”, J. Bacteriol., 173 (1991), 3303–3310

[25] Rycovska A., Hatahet L., Fendler K., Michel H., “The nitrite transport protein NirC from Salmonella typhimurium is a nitrite/proton antiporter”, Biochim. Biophys. Acta, 1818 (2012), 1342–1350 | DOI

[26] Cavicchioli R., Chiang R. C., Kalman L. V., Gunsalus R. P., “Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation”, Mol. Microbiol., 21 (1996), 901–911 | DOI