Elaboration of the Homologous Plastid-Encoded Protein Families that Separate Paralogs in Magnoliophytes
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 225-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

The division of proteins into families such that paralogous proteins belong to different families allows clarifying protein annotations and searching a family by its phylogenetic profile. The profile is defined by separating the set of species into three parts according to the presence/absence of a protein binding site (or other species feature) as well as indeterminacy in that respect. Another use of the families can be the search of proteins specific for a narrow taxonomic group (“signatures”). We have developed the algorithm to form these families and applied it to various sets of proteins. Among them is a set of plastid-encoded proteins in 186 Magnoliophyta plants. For this case, the corresponding database and algorithm for family search by a phylogenetic profile are freely accessible on the Web at http://lab6.iitp.ru/ppc/magnoliophyta/. The algorithm was also used for the division (clusterization) of mitochondrion-encoded proteins in 66 species of the green plants taxon (Viridiplantae); the corresponding database is provided at http://lab6.iitp.ru/mpc/viridiplantae/. The algorithm was applied to both rhodophyta-like and chlorophyta-like (algae and bryophytes) plastid branches; the corresponding databases are presented at http://lab6.iitp.ru/ppc/redline/ and http://lab6.iitp.ru/ppc/chlorophyta/. On this basis, some biological results were obtained. For example, in grape (Vitis vinifera) we found unique proteins which at the same time are typical for plastids. This allows predicting the horizontal gene transfer from plastids to mitochondria. The formal statement of the proteins clusterization problem is still waiting for completion.
@article{MBB_2013_8_1_a13,
     author = {V. A. Lyubetsky and A. V. Seliverstov and O. A. Zverkov},
     title = {Elaboration of the {Homologous} {Plastid-Encoded} {Protein} {Families} that {Separate} {Paralogs} in {Magnoliophytes}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {225--233},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a13/}
}
TY  - JOUR
AU  - V. A. Lyubetsky
AU  - A. V. Seliverstov
AU  - O. A. Zverkov
TI  - Elaboration of the Homologous Plastid-Encoded Protein Families that Separate Paralogs in Magnoliophytes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 225
EP  - 233
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a13/
LA  - ru
ID  - MBB_2013_8_1_a13
ER  - 
%0 Journal Article
%A V. A. Lyubetsky
%A A. V. Seliverstov
%A O. A. Zverkov
%T Elaboration of the Homologous Plastid-Encoded Protein Families that Separate Paralogs in Magnoliophytes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 225-233
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a13/
%G ru
%F MBB_2013_8_1_a13
V. A. Lyubetsky; A. V. Seliverstov; O. A. Zverkov. Elaboration of the Homologous Plastid-Encoded Protein Families that Separate Paralogs in Magnoliophytes. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 225-233. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a13/

[1] Zverkov O. A., Seliverstov A. V., Lyubetskii V. A., “Belkovye semeistva, spetsifichnye dlya plastomov nebolshikh taksonomicheskikh grupp vodoroslei i prosteishikh”, Molekulyarnaya biologiya, 46:5 (2012), 799–809

[2] Zverkov O. A., Rusin L. Yu., Seliverstov A. V., Lyubetskii V. A., “Izuchenie vstavok pryamykh povtorov v mikroevolyutsii mitokhondrii i plastid rastenii na osnove klasterizatsii belkov”, Vestnik Moskovskogo universiteta. Seriya 16: Biologiya, 2013, no. 1, 12–17

[3] Altenhoff A. M., Dessimoz C., “Phylogenetic and functional assessment of orthologs inference projects and methods”, PLoS Computational Biology, 5:1 (2009), e1000262 (data obrascheniya: 14.04.2013) http://dx.plos.org/10.1371/journal.pcbi.1000262 | DOI

[4] Zaguskin V. L., “Ob opisannykh i vpisannykh ellipsoidakh ekstremalnogo ob'ema”, Uspekhi matematicheskikh nauk, 13:6 (1958), 89–93 | MR | Zbl

[5] Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods”, Molecular Biology and Evolution, 28 (2011), 2731–2739 | DOI

[6] Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G., Forslund K. et al., “The Pfam protein families database”, Nucleic acids research, 38, Database issue. D211–D222 (2010) (data obrascheniya: 14.04.2013) http://nar.oxfordjournals.org/content/38/suppl_1/D211.full | DOI

[7] Needleman S. B., Wunsch C. D., “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, Journal of Molecular Biology, 48:3 (1970), 443–453 | DOI

[8] BLOSUM Clustered Scoring Matrix, (data obrascheniya: 14.04.2013) http://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt

[9] Kruskal J. B., “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem”, Proceedings of the American Mathematical Society, 7:1 (1956), 48–50 | DOI | MR | Zbl

[10] Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C. et al., “The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla”, Nature, 449:7161 (2007), 463–467 | DOI