Logical and Statistical Analysis of Relationship Between Clinical and Laboratory Indices and Disturbances of Cerebral Blood Circulation in Elderly Patients with Chronic Ischemia of the Brain
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 182-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents results of studies, aimed to asses relation between a set of clinical and laboratory indices and risk of transient ischemic attacks (TIA) and ischemic stroke in patients from elder age groups with chronic cerebral ischemia (CCI). The studies were based on pattern recognition techniques and data mining method implementing optimal statistically valid partitioning of feature space. The risk factors of transient ischemic attack were found: lipidic spectrum, blood cell counts, biochemical indices, type of hyperlipidemia, II-III stages of CCI, left ventricular hypertrophy by electrocardiogram, ultrasonic scanning features of thyroid diffusive changes. It was found that exactness of TIA prediction with the help of pattern recognition techniques achieves 81.5% if all features forming basic regularities are used. In patients that previously suffered from TIA set of risk factors for further ischemic stroke includes: CHD with ciliary arrhythmia, breaks of rhythm, hyperglycemia. Forecasting ability of pattern recognition technique is 77%.
@article{MBB_2013_8_1_a12,
     author = {A. V. Kuznetsova and I. V. Kostomarova and O. V. Senko},
     title = {Logical and {Statistical} {Analysis} of {Relationship} {Between} {Clinical} and {Laboratory} {Indices} and {Disturbances} of {Cerebral} {Blood} {Circulation} in {Elderly} {Patients} with {Chronic} {Ischemia} of the {Brain}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {182--224},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a12/}
}
TY  - JOUR
AU  - A. V. Kuznetsova
AU  - I. V. Kostomarova
AU  - O. V. Senko
TI  - Logical and Statistical Analysis of Relationship Between Clinical and Laboratory Indices and Disturbances of Cerebral Blood Circulation in Elderly Patients with Chronic Ischemia of the Brain
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 182
EP  - 224
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a12/
LA  - ru
ID  - MBB_2013_8_1_a12
ER  - 
%0 Journal Article
%A A. V. Kuznetsova
%A I. V. Kostomarova
%A O. V. Senko
%T Logical and Statistical Analysis of Relationship Between Clinical and Laboratory Indices and Disturbances of Cerebral Blood Circulation in Elderly Patients with Chronic Ischemia of the Brain
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 182-224
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a12/
%G ru
%F MBB_2013_8_1_a12
A. V. Kuznetsova; I. V. Kostomarova; O. V. Senko. Logical and Statistical Analysis of Relationship Between Clinical and Laboratory Indices and Disturbances of Cerebral Blood Circulation in Elderly Patients with Chronic Ischemia of the Brain. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 182-224. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a12/

[1] Anisimov V. N., “Goryachie tochki sovremennoi gerontologii”, Priroda, 2 (2007), 52–61

[2] Gusev E. I., Skvortsova V. I., Ishemiya golovnogo mozga, Meditsina, M., 2001, 327–328

[3] Easton J. D., Saver J. L., Albers G. W., Alberts M. J., Chaturvedi S., Feldmann E., Hatsukami T. S., Higashida R. T., Johnston S. C., Kidwell C. S., Lutsep H. L., Miller E., Sacco R. L., “Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association / American Stroke Association Stroke Council”, Stroke, 40:6 (2009), 2277–2278 | DOI

[4] Semak A. E., Karnatsevich Yu. S., Borisov A. V., Faktory riska vozniknoveniya sosudistykh mozgovykh katastrof, Zdravookhranenie, Minsk, 2001

[5] Gafurov B. G., Alikulova N. A., “Kliniko-patogeneticheskie osobennosti i voprosy lechebnoi taktiki pri ishemicheskom insulte v pozhilom i starcheskom vozraste”, Insult (prilozhenie k Zhurnalu nevrologii i psikhiatrii im. S. S. Korsakova), 11 (2004), 44–46

[6] Ansell B. J., Navab M., Hama S., Kamranpour N., Fonarow G., Hough G., Rahmani Sh., Mottahedeh R., Dave R., Reddy S. T., Fogelman A. M., Circulation, 108 (2003), 2751–2756 | DOI

[7] Kuznetsova A. V., Senko O. V., “Vozmozhnosti ispolzovaniya metodov Data Mining pri mediko-laboratornykh issledovaniyakh dlya vyyavleniya zakonomernostei v massivakh dannykh”, Vrach i informatsionnye tekhnologii, 1 (2005), 49–56 | MR

[8] Senko O. V., Kuznetsova A. V., The Optimal Valid Partitioning Procedures, , «InterStat», Statistics in Internet (data obrascheniya: 18.02.2013) http://interstat.statjournals.net/YEAR/2006/articles/0604002.pdf

[9] Kadykov A. S., Manvelov L. S., Shakhparonova N. V., Khronicheskie sosudistye zabolevaniya golovnogo mozga (distsirkulyatornaya entsefalopatiya), GEOTAR-Media, SPb., 2006, 236 pp.

[10] V. N. Shtok, O. S. Levin, Spravochnik po formulirovaniyu klinicheskogo diagnoza boleznei nervnoi sistemy, OOO “Meditsinskoe informatsionnoe agentstvo”, M., 2006, 520 pp.

[11] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., “Raspoznavanie”. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, Fazis, M., 2006

[12] Ryazanov V. V., “Logicheskie zakonomernosti v zadachakh raspoznavaniya (parametricheskii podkhod)”, Zh. vychisl. matem. i matem. fiz., 47:10 (2007), 1793–1808 | MR

[13] Senko O., Kuznetsova A., “A recognition method based on collective decision making using systems of regularities of various types”, Pattern Recognition and Image Analysis, 20:2 (2010), 152–162 | DOI

[14] Rizzo M., Corrado E., Coppola G., Muratori I., Novo G., Novo S., “Prediction of cardio- and cerebro-vascular events in patients with subclinical carotid atherosclerosis and low HDL-cholesterol”, Atherosclerosis, 200:2 (2008), 389–395 | DOI

[15] Novo S., Carita P., Corrado E., D'Ambrosi A., Novo G., “Low HDL-cholesterol concentration cause atherosclerotic disease to develop”, E-Journal of the ESC Council for Cardiology Practice, 7:32 (2009) | Zbl

[16] Amareco P., Golstein L. B., Gallahan A. 3 rd., Sillesen H., Hennericie M. G., O'Neillf B. J., Rudolphg A. E., Simunovicg L., Zivinh J. A., Welchi K. M. A., “Baseline blood pressure, low- and high-density lipoproteins, and triglycerides and the risk of vascular events in the Stroke Prevention by Agressive Reduction in Cholesterol Levels (SPARCL) trial”, Atherosclerosis, 204:2 (2009), 515–520 | DOI

[17] Simons L. A., Simons J., Fridlander Y., McCallum J., “Cholesterol and other lipids predict coronary heart disease and ischaemic stroke in the elderly, but only in those below 70 years”, Atherosclerosis, 159:1 (2001), 201–208 | DOI

[18] Gordon T., Kannel W. B., Castelli W. P., Dawber T. R., “Lipoproteins, cardiovascular disease and death: the Framingham study”, Arch. Intern. Med., 141 (1981), 1128–1131 | DOI

[19] Palmer A., Bulpitt C., Beevers G., Coles E., Fletcher A., Ledingham J., Petrie J., Webster J., Dollery C., “Risk factors for ischaemic heart disease and stroke mortality in young and old hypertensive patients”, J. Hum. Hypertens., 9 (1995), 695–697

[20] Nawawi H., Day L., Mikhailidis D., Hamilton G., Winder A. F., “Secondary prevention and referral of elderly patients to a cardiovascular lipid service”, Arch. Gerontol. Geriatr., 29 (1999), 1–11 | DOI

[21] Demchuk A. M., Hess D. C., Brass L. M., Yatsu F. M., “Is cholesterol a risk factor for stroke? Yes”, Arch. Neurol., 56 (1999), 1518–1520 | DOI

[22] Wannamethee S. G., Shaper G., Ebrahim S., “HDL-Cholesterol, total Cholesterol and the risk of stroke in middle-aged British men”, Stroke, 31 (2000), 1882–1892 | DOI

[23] Kuznetsova V., Kostomarova I. V., Vodolagina N. N., Malygina N. A., Senko O. V., “Izuchenie vliyaniya kliniko-geneticheskikh faktorov na techenie distsirkulyatornoi entsefalopatii s ispolzovaniem metodov raspoznavaniya”, Matem. biolog. i bioinform., 6:1 (2011), 115–146 (data obrascheniya: 25.03.2013) http://www.matbio.org/2011/Senko2011(6_115).pdf | MR

[24] Senko O. V., Kuznetsova A. V., “Methods for discovering and analysis of regularities systems. Approach based on optimal partitioning of explanatory variables space”, Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, KDIR 2011, 2011, 423–426

[25] Senko O. V., Kuznetsova A. V., Malygina N. A., Kostomarova I. V., “Method for Evaluating of Discrepancy between Regularities Systems in Different Groups”, Information Technologies Knowledge, 5:1 (2011), 46–54