Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes
Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 21-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A collection of mathematical models of epidemic processes in the form of nonlinear systems delay differential equations, integro-differential equations and high-dimensioned ordinary differential equations is built. The results of analysis of asymptotic stability of trivial equilibrium of models are presented. The sufficient conditions for asymptotic stability of such equilibrium are got. The problem of stability of the models solutions for permanent disturbances is studied. Sufficient conditions are formulated in terms of smallness of the groups of susceptible individuals. Provides recommendations for the implementation of activities aimed at the containment of the epidemic process and reduce the incidence rate for tuberculosis and HIV-infection.
@article{MBB_2013_8_1_a10,
     author = {N. V. Pertsev and B. Yu. Pichugin and A. N. Pichugina},
     title = {Analysis of the {Asymptotic} {Behavior} {Solutions} of {Some} {Models} of {Epidemic} {Processes}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {21--48},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a10/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - B. Yu. Pichugin
AU  - A. N. Pichugina
TI  - Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2013
SP  - 21
EP  - 48
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a10/
LA  - ru
ID  - MBB_2013_8_1_a10
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A B. Yu. Pichugin
%A A. N. Pichugina
%T Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes
%J Matematičeskaâ biologiâ i bioinformatika
%D 2013
%P 21-48
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a10/
%G ru
%F MBB_2013_8_1_a10
N. V. Pertsev; B. Yu. Pichugin; A. N. Pichugina. Analysis of the Asymptotic Behavior Solutions of Some Models of Epidemic Processes. Matematičeskaâ biologiâ i bioinformatika, Tome 8 (2013) no. 1, pp. 21-48. http://geodesic.mathdoc.fr/item/MBB_2013_8_1_a10/

[1] Anderson R., Mei R., Infektsionnye bolezni cheloveka: dinamika i kontrol, Mir, M., 2004, 784 pp.

[2] Avilov K. K., Romanyukha A. A., “Matematicheskie modeli rasprostraneniya i kontrolya tuberkuleza”, obzor, Matematicheskaya biologiya i bioinformatika, 2:2 (2007), 188–318

[3] Nosova E. A., “Modeli kontrolya i rasprostraneniya VICh-infektsii”, Matematicheskaya biologiya i bioinformatika, 7:2 (2012), 632–675

[4] Cooke K., York J., “Some equations Modelling Growth Processes and Gonorhea Epidemics”, Math. Biosc., 16 (1973), 75–101 | DOI | MR | Zbl

[5] Busenberg S., Cooke K., “The Effect of Integral Conditions in Certain Equations Modelling Epidemics and Population Growth”, J. Math. Biol., 10:1 (1980), 13–32 | DOI | MR | Zbl

[6] Hethcote H. W., Stech H. W., van den Driessche P., “Stability analisys for models of diseases without immunity”, J. Math. Biol., 13 (1981), 185–198 | DOI | MR | Zbl

[7] Perelman M. I., Marchuk G. I., Borisov S. E., Romanyukha A. A. et. al., “Tuberculosis epidemiology in Russia: the mathematical model and data analysis”, Russ. J. Numer. Anal. Math. Modelling, 19:4 (2004), 305–314 | DOI | MR | Zbl

[8] Avilov K. K., Romanyukha A. A., “Matematicheskoe modelirovanie protsessov rasprostraneniya tuberkuleza i vyyavleniya bolnykh”, Avtomatika i telemekhanika, 2007, no. 9, 145–160 | MR | Zbl

[9] Melnichenko A. O., Romanyukha A. A., “A model of tuberculosis epidemiology: estimation of parameters and analysis of factors influencing the dynamics of an epidemic process”, Russ. J. Numer. Anal. Math. Modelling, 23:1 (2008), 1–13 | DOI | MR

[10] Romanyukha A. A., Nosova E. A., “Model rasprostraneniya VICh-infektsii v rezultate sotsialnoi dezadaptatsii”, Upravlenie bolshimi sistemami, 34 (2011), 227–253

[11] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981, 448 pp. | MR

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[13] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962, 396 pp. | MR

[14] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR

[15] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[16] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 223 pp. | Zbl

[17] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976, 352 pp. | MR

[18] Gantmakher F. R., Teoriya matrits, 2-e izd., dop., Nauka, M., 1966, 576 pp. | MR

[19] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl

[20] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979, 340 pp. | MR | Zbl

[21] Obolenskii A. Yu., “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukrainskii matematicheskii zhurnal, 35 (1983), 574–579 | MR