Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_a9, author = {Konstantin V. Anokhin and Mikhail S. Burtsev and Viachesav A. Ilyin and Ilya I. Kiselev and Konstantin A. Kukin and Konstantin V. Lakhman and Alexander V. Paraskevov and Roman B. Rybka and Alexander G. Sboev and Nikolay V. Tverdokhlebov}, title = {A review of computational models of neuronal cultures \emph{in vitro}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {372--397}, publisher = {mathdoc}, volume = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a9/} }
TY - JOUR AU - Konstantin V. Anokhin AU - Mikhail S. Burtsev AU - Viachesav A. Ilyin AU - Ilya I. Kiselev AU - Konstantin A. Kukin AU - Konstantin V. Lakhman AU - Alexander V. Paraskevov AU - Roman B. Rybka AU - Alexander G. Sboev AU - Nikolay V. Tverdokhlebov TI - A review of computational models of neuronal cultures \emph{in vitro} JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 372 EP - 397 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_a9/ LA - ru ID - MBB_2012_7_a9 ER -
%0 Journal Article %A Konstantin V. Anokhin %A Mikhail S. Burtsev %A Viachesav A. Ilyin %A Ilya I. Kiselev %A Konstantin A. Kukin %A Konstantin V. Lakhman %A Alexander V. Paraskevov %A Roman B. Rybka %A Alexander G. Sboev %A Nikolay V. Tverdokhlebov %T A review of computational models of neuronal cultures \emph{in vitro} %J Matematičeskaâ biologiâ i bioinformatika %D 2012 %P 372-397 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2012_7_a9/ %G ru %F MBB_2012_7_a9
Konstantin V. Anokhin; Mikhail S. Burtsev; Viachesav A. Ilyin; Ilya I. Kiselev; Konstantin A. Kukin; Konstantin V. Lakhman; Alexander V. Paraskevov; Roman B. Rybka; Alexander G. Sboev; Nikolay V. Tverdokhlebov. A review of computational models of neuronal cultures \emph{in vitro}. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 372-397. http://geodesic.mathdoc.fr/item/MBB_2012_7_a9/
[1] Churchland P. S., Sejnowski T. J., “Perspectives on Cognitive Neuroscience”, Science, 242:4879 (1988), 741–745 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.3055294'>10.1126/science.3055294</ext-link>
[2] Deisseroth K., Feng G., Majewska A. K., Miesenböck G., Ting A., Schnitzer M. J., “Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits”, J. Neurosci., 26:41 (2006), 10380–10386 <ext-link ext-link-type='doi' href='https://doi.org/10.1523/JNEUROSCI.3863-06.2006'>10.1523/JNEUROSCI.3863-06.2006</ext-link>
[3] Kravitz A. V., Kreitzer A. C., “Optogenetic manipulation of neural circuitry in vivo”, Current Opinion in Neurobiology, 21:3 (2011), 433–439 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.conb.2011.02.010'>10.1016/j.conb.2011.02.010</ext-link>
[4] Soe A. K., Nahavandi S., Khoshmanesh K., “Neuroscience goes on a chip”, Biosensors and Bioelectronics
[5] Hierlemann A., Frey U., Hafizovic S., Heer F., “Growing Cells Atop Microelectronic Chips: Interfacing Electrogenic Cells In Vitro With CMOS-Based Microelectrode Arrays”, Proceedings of the IEEE, 99:2 (2011), 252–284 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/JPROC.2010.2066532'>10.1109/JPROC.2010.2066532</ext-link>
[6] (data obrascheniya 06.07.2012) <ext-link ext-link-type='uri' href='http://en.wikipedia.org/wiki/Cultured_neuronal_network'>http://en.wikipedia.org/wiki/Cultured_neuronal_network</ext-link>
[7] Gross G. W., “Simultaneous Single Unit Recording in vitro with a Photoetched Laser Deinsulated Gold Multimicroelectrode Surface”, IEEE Transactions on Biomedical Engineering BME, 26:5 (1979), 273–279 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TBME.1979.326402'>10.1109/TBME.1979.326402</ext-link>
[8] Pine J., “Recording action potentials from cultured neurons with extracellular microcircuit electrodes”, Journal of Neuroscience Methods, 2:1 (1980), 19–31 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0165-0270(80)90042-4'>10.1016/0165-0270(80)90042-4</ext-link>
[9] Segev R., Shapira Y., Benveniste M., Ben-Jacob E., “Observations and modeling of synchronized bursting in two-dimensional neural networks”, Physical Review E, 64:1 (2001), 011920 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevE.64.011920'>10.1103/PhysRevE.64.011920</ext-link>
[10] Segev R., Benveniste M., Shapira Y., Ben-Jacob E., “Formation of electrically active clusterized neural networks”, Physical review letters, 90:16 (2003), 168101 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRevLett.90.168101'>10.1103/PhysRevLett.90.168101</ext-link>
[11] Persi E., Horn D., Volman V., Segev R., Ben-Jacob E., “Modeling of Synchronized Bursting Events: The Importance of Inhomogeneity”, Neural Computation, 16:12 (2004), 2577–2595 <ext-link ext-link-type='doi' href='https://doi.org/10.1162/0899766042321823'>10.1162/0899766042321823</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1057.92023'>1057.92023</ext-link>
[12] Beggs J. M., Plenz D., “Neuronal avalanches in neocortical circuits”, Journal of Neuroscience, 23:35 (2003), 11167
[13] Pasquale V., Massobrio P., Bologna L. L., Chiappalone M., Martinoia S., “Self-organization and neuronal avalanches in networks of dissociated cortical neurons”, Neuroscience, 153:4 (2008), 1354–1369 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.neuroscience.2008.03.050'>10.1016/j.neuroscience.2008.03.050</ext-link>
[14] Bakkum D. J., Chao Z. C., Potter S. M., “Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task”, Journal of Neural Engineering, 5 (2008), 310–323 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1741-2560/5/3/004'>10.1088/1741-2560/5/3/004</ext-link>
[15] Chao Z. C., Bakkum D. J., Potter S. M., “Shaping Embodied Neural Networks for Adaptive Goal-directed Behavior”, PLoS Comput Biol., 4:3 (2008), e1000042 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1000042'>10.1371/journal.pcbi.1000042</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2393323'>2393323</ext-link>
[16] Simonov A. Yu., Kazantsev V. B., “Model vozniknoveniya lavinoobraznykh bioelektricheskikh razryadov v neironnykh setyakh mozga”, Pisma v ZhETF, 93:8 (2011), 516–521
[17] Segev R., Baruchi I., Hulata E., Ben-Jacob E., “Hidden neuronal correlations in cultured networks”, Physical Review-Series A, 92:11 (2004), 118102–118300
[18] Tsodyks M., Uziel A., Markram H., “Synchrony generation in recurrent networks with frequency-dependent synapses”, J. Neurosci., 20:1 (2000), 825–835
[19] Wagenaar D. A., Pine J., Potter S. M., “An extremely rich repertoire of bursting patterns during the development of cortical cultures”, BMC neuroscience, 7:1 (2006), 11 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2202-7-11'>10.1186/1471-2202-7-11</ext-link>
[20] Robinson H. P., Kawahara M., Jimbo Y., Torimitsu K., Kuroda Y., Kawana A., “Periodic Synchronized Bursting and Intracellular Calcium Transients Elicited by Low Magnesium in Cultured Cortical Neurons”, J. Neurophysiol., 70:4 (1993), 1606–1616
[21] Meister M., Wong R. O., Baylor D. A., Shatz C. J., “Synchronous Bursts of Action Potentials in Ganglion Cells of the Developing Mammalian Retina”, Science, 252:5008 (1991), 939–943 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.2035024'>10.1126/science.2035024</ext-link>
[22] Engel A. K., Konig P., Kreiter A. K., Schillen T. B., Singer W., “Temporal coding in the visual cortex: new vistas on integration in the nervous system”, Trends in Neurosciences, 15:6 (1992), 218–226 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0166-2236(92)90039-B'>10.1016/0166-2236(92)90039-B</ext-link>
[23] Shahaf G., Marom S., “Learning in Networks of Cortical Neurons”, J. Neurosci., 21:22 (2001), 8782–8788
[24] Marom S., Eytan D., “Learning in ex-vivo developing networks of cortical neurons”, Development, Dynamics and Pathiology of Neuronal Networks: from Molecules to Functional Circuits, 147, Elsevier, 2005, 189–199 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0079-6123(04)47014-9'>10.1016/S0079-6123(04)47014-9</ext-link>
[25] DeMarse T. B., Wagenaar D. A., Blau A. W., Potter S. M., “The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies”, Auton Robots, 11:3 (2001), 305–310 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1012407611130'>10.1023/A:1012407611130</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1012.68630'>1012.68630</ext-link>
[26] DeMarse T. B., Dockendorf K. P., “Adaptive flight control with living neuronal networks on microelectrode arrays”, Proc. of 2005 IEEE International Joint Conference on Neural Networks, IJCNN2005 (Montreal, Canada), v. 3, 2005, 1548–1551 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/IJCNN.2005.1556108'>10.1109/IJCNN.2005.1556108</ext-link>
[27] Novellino A., D'Angelo P., Cozzi L., Chiappalone M., Sanguineti V., Martinoia S., “Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface”, Computational Intelligence and Neuroscience, 2007 (2007), 1–13 <ext-link ext-link-type='doi' href='https://doi.org/10.1155/2007/12725'>10.1155/2007/12725</ext-link>
[28] le Feber J., Stegenga J., Rutten W. L. C., “The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons”, PLoS ONE, 5:1 (2010), e8871 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pone.0008871'>10.1371/journal.pone.0008871</ext-link>
[29] Warwick K., Xydas D., Nasuto S. J., Becerra V. M., Hammond M. W., Downes J. H., Marshall S., Whalley B. J., “Controlling a mobile robot with a biological brain”, Defence Science Journal, 60:1 (2010), 5–14
[30] Mulas M., Massobrio P., Martinoia S., Chiappalone M., “A simulated neuro-robotic environment for bi-directional closed-loop experiments”, Paladyn. Journal of behavioral robotics, 1 (2011), 179–186 <ext-link ext-link-type='doi' href='https://doi.org/10.2478/s13230-011-0004-x'>10.2478/s13230-011-0004-x</ext-link>
[31] Izhikevich E. M., Which model to use for cortical spiking neurons?, Neural Networks, IEEE Transactions on, 15:5 (2004), 1063–1070 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TNN.2004.832719'>10.1109/TNN.2004.832719</ext-link>
[32] Tsodyks Misha, Uziel A., Markram H. T., “Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses”, J. Neurosci., 20:1 (2000), RC50–RC50
[33] Koch C., Biophysics of computation: information processing in single neurons, Oxford University Press, USA, 2005 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1156.35460'>1156.35460</ext-link>
[34] Gerstner W., Kistler W. M., Spiking neuron models: Single neurons, populations, plasticity, Cambridge Univ Pr., 2002 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1923120'>1923120</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1100.92501'>1100.92501</ext-link>
[35] Burkitt A. N., “A review of the integrate-and-fire neuron model. I: Homogeneous synaptic input”, Biological cybernetics, 95:1 (2006), 1–19 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00422-006-0068-6'>10.1007/s00422-006-0068-6</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2237180'>2237180</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1161.92315'>1161.92315</ext-link>
[36] Burkitt A. N., “A review of the integrate-and-fire neuron model. II: Inhomogeneous synaptic input and network properties”, Biological cybernetics, 95:2 (2006), 97–112 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00422-006-0082-8'>10.1007/s00422-006-0082-8</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2237221'>2237221</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1161.92314'>1161.92314</ext-link>
[37] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, The Journal of physiology, 117:4 (1952), 500–544
[38] Hodgkin A. L., Huxley A. F., Katz B., “Measurement of current-voltage relations in the membrane of the giant axon of Loligo”, The Journal of physiology, 116:4 (1952), 424–448
[39] Izhikevich E. M., “Simple model of spiking neurons”, Neural Networks, IEEE Transactions on, 14:6 (2003), 1569–1572 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TNN.2003.820440'>10.1109/TNN.2003.820440</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2030851'>2030851</ext-link>
[40] Fitzhugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical journal, 1:6 (1961), 445–466 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0006-3495(61)86902-6'>10.1016/S0006-3495(61)86902-6</ext-link>
[41] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50:10 (1962), 2061–2070 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/JRPROC.1962.288235'>10.1109/JRPROC.1962.288235</ext-link>
[42] Izhikevich E. M., Edelman G. M., “Large-scale model of mammalian thalamocortical systems”, Proceedings of the national academy of sciences, 105:9 (2008), 3593 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0712231105'>10.1073/pnas.0712231105</ext-link>
[43] Dayan P., Abbott L. F., Abbott L., Theoretical neuroscience: Computational and mathematical modeling of neural systems, 2001 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1985615'>1985615</ext-link>
[44] Tsodyks M. V., Markram H., “The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability”, Proceedings of the National Academy of Sciences, 94:2 (1997), 719 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.94.2.719'>10.1073/pnas.94.2.719</ext-link>
[45] Bi G., Poo M., “Synaptic modification by correlated activity: Hebb's postulate revisited”, Annual review of neuroscience, 24:1 (2001), 139–166 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.neuro.24.1.139'>10.1146/annurev.neuro.24.1.139</ext-link>
[46] Sjöström P. J., Rancz E. A., Roth A., Hausser M., “Dendritic excitability and synaptic plasticity”, Physiological reviews, 88:2 (2008), 769–840 <ext-link ext-link-type='doi' href='https://doi.org/10.1152/physrev.00016.2007'>10.1152/physrev.00016.2007</ext-link>
[47] Song S., Miller K. D., Abbott L. F., “Competitive Hebbian learning through spike-timing-dependent synaptic plasticity”, Nature neuroscience, 3 (2000), 919–926 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/78829'>10.1038/78829</ext-link>
[48] Gritsun T. A., Le Feber J., Stegenga J., Rutten W. L., “Network bursts in cortical cultures are best simulated using pacemaker neurons and adaptive synapses”, Biological cybernetics, 102:4 (2010), 293–310 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00422-010-0366-x'>10.1007/s00422-010-0366-x</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2607631'>2607631</ext-link>
[49] Massobrio P., Martinoia S., “Modelling small-patterned neuronal networks coupled to microelectrode arrays”, Journal of Neural Engineering, 5 (2008), 350 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1741-2560/5/3/008'>10.1088/1741-2560/5/3/008</ext-link>
[50] Richards C. D., Shiroyama T., Kitai S. T., “Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat”, Neuroscience, 80:2 (1997), 545–557 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0306-4522(97)00093-6'>10.1016/S0306-4522(97)00093-6</ext-link>
[51] Latham P. E., Richmond B. J., Nelson P. G., Nirenberg S., “Intrinsic dynamics in neuronal networks. I: Theory”, Journal of Neurophysiology, 83:2 (2000), 808–827
[52] Latham P. E., Richmond B. J., Nirenberg S., Nelson P. G., “Intrinsic dynamics in neuronal networks. II: Experiment”, Journal of neurophysiology, 83:2 (2000), 828–835
[53] Carnevale N. T., Hines M. L., The NEURON book, Cambridge Univ Pr., 2006
[54] Reeke G. N. et al. (eds.), Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics, 2nd ed., CRC Press, 2005, 736 pp.
[55] Chao Z. C., Bakkum D. J., Wagenaar D. A., Potter S. M., “Effects of random external background stimulation on network synaptic stability after tetanization”, Neuroinformatics, 3:3 (2005), 263–280 <ext-link ext-link-type='doi' href='https://doi.org/10.1385/NI:3:3:263'>10.1385/NI:3:3:263</ext-link>