Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_a19, author = {E. A. Riabenko}, title = {Setting {Up} the {Nonlinear} {Model} of {Experimental} {Data} {From} {DNA} {Microarrays}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {554--566}, publisher = {mathdoc}, volume = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a19/} }
E. A. Riabenko. Setting Up the Nonlinear Model of Experimental Data From DNA Microarrays. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 554-566. http://geodesic.mathdoc.fr/item/MBB_2012_7_a19/
[1] Hubbell E., Liu W.-M., Mei R., “Robust estimators for expression analysis”, Bioinformatics, 18:12 (2002), 1585–1592 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/18.12.1585'>10.1093/bioinformatics/18.12.1585</ext-link>
[2] Li C., Wong W. H., “Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application”, Genome Biology, 2:8 (2001), RESEARCH0032 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2702454'>2702454</ext-link>
[3] Koltai H., Weingarten-Baror C., “Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction”, Nucleic acids research, 36:7 (2008), 2395–405 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkn087'>10.1093/nar/gkn087</ext-link>
[4] Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data”, Biostatistics, 4:2 (2003), 249–264 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/biostatistics/4.2.249'>10.1093/biostatistics/4.2.249</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1141.62348'>1141.62348</ext-link>
[5] Wu Z., Irizarry R. A., Gentleman R., Martinez-Murillo F., Spencer F., “A model-based background adjustment for oligonucleotide expression arrays”, Journal of the American Statistical Association, 99:468 (2004), 909–917 <ext-link ext-link-type='doi' href='https://doi.org/10.1198/016214504000000683'>10.1198/016214504000000683</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2113309'>2113309</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1055.62129'>1055.62129</ext-link>
[6] Li C., Wong W. H., “Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection”, Proceedings of the National Academy of Sciences of the United States of America, 98:1 (2001), 31–36 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.121192298'>10.1073/pnas.121192298</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2702454'>2702454</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0990.62091'>0990.62091</ext-link>
[7] Affymetrix, Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. Technical note, (data obrascheniya: 02.09.2012) <ext-link ext-link-type='uri' href='http://media.affymetrix.com/support/technical/technotes/plier_technote.pdf'>http://media.affymetrix.com/support/technical/technotes/plier_technote.pdf</ext-link>
[8] Katz S., Irizarry R. A., Lin X., Tripputi M., Porter M. W., “A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database”, BMC bioinformatics, 7 (2006), 464 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2105-7-464'>10.1186/1471-2105-7-464</ext-link>
[9] McCall M. N., Bolstad B. M., Irizarry R. A., “Frozen robust multiarray analysis (fRMA)”, Biostatistics, 11:2 (2010), 242–253 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/biostatistics/kxp059'>10.1093/biostatistics/kxp059</ext-link>
[10] McCall M. N., Irizarry R. A., “Thawing Frozen Robust Multi-array Analysis (fRMA)”, BMC Bioinformatics, 12:1 (2011), 369 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1471-2105-12-369'>10.1186/1471-2105-12-369</ext-link>
[11] The National Center for Biotechnology Information, Gene Expression Omnibus, (data obrascheniya: 02.09.2012) <ext-link ext-link-type='uri' href='http://www.ncbi.nlm.nih.gov/geo/'>http://www.ncbi.nlm.nih.gov/geo/</ext-link>
[12] Halperin A., Buhot A., Zhulina E. B., “Sensitivity, specificity, and the hybridization isotherms of DNA chips”, Biophysical Journal, 86 (2004), 718–730 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0006-3495(04)74150-8'>10.1016/S0006-3495(04)74150-8</ext-link>
[13] Abdueva D., Skvortsov D., Tavaré S., “Non-linear analysis of GeneChip arrays”, Nucleic acids research, 34:15 (2006), e105 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkl435'>10.1093/nar/gkl435</ext-link>
[14] Heim T., Wolterink J. K., Carlon E., Barkema G. T., “Effective affinities in microarray data”, Journal of Physics: Condensed Matter, 18 (2006), S525 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/0953-8984/18/18/S03'>10.1088/0953-8984/18/18/S03</ext-link>
[15] Held G. A., Grinstein G., Tu Y., “Relationship between gene expression and observed intensities in DNA microarrays — a modeling study”, Nucleic acids research, 34:9 (2006), e70 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkl122'>10.1093/nar/gkl122</ext-link>
[16] Binder H., Preibisch S., Berger H., “Calibration of microarray gene-expression data”, Methods in Molecular Biology, 576:16 (2010), 375–407
[17] Krainer S., Microarray based real-time analysis of nucleic acid hybridization kinetics and thermodynamics, Dissertation, Dept. of Biology, Johannes Gutenberg-Universitat Mainz, 2011
[18] Davis S., Meltzer P. S., “GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor”, Bioinformatics, 14 (2007), 1846–1847 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/bioinformatics/btm254'>10.1093/bioinformatics/btm254</ext-link>
[19] Huber W., Irizarry R. A., Gentleman R., Bioinformatics and Computational Biology Solutions Using R and Bioconductor, eds. Gentleman R., Carey V. J., Huber W., Irizarry R.A., Dudoit S., Springer Science & Business Media, New York, 2005, 3–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/0-387-29362-0_1'>10.1007/0-387-29362-0_1</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2201836'>2201836</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1111.68353'>1111.68353</ext-link>
[20] Affymetrix. Sample Data, Gene 1.0 ST Data Set., (data obrascheniya: 02.09.2012) <ext-link ext-link-type='uri' href='http://www.affymetrix.com/support/technical/sample_data/gene_1_0_array_data.affx'>http://www.affymetrix.com/support/technical/sample_data/gene_1_0_array_data.affx</ext-link>
[21] Cichocki A., Cruces S., Amari S., “Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization”, Entropy, 13:1 (2011), 134–170 <ext-link ext-link-type='doi' href='https://doi.org/10.3390/e13010134'>10.3390/e13010134</ext-link>
[22] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1256 pp. <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2371990'>2371990</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1132.65001'>1132.65001</ext-link>