Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_a18, author = {I. N. Kiselev and B. V. Semisalov and E. A. Biberdorf and R. N. Sharipov and A. M. Blokhin and F. A. Kolpakov}, title = {Modular {Modeling} of the {Human} {Cardiovascular} {System}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {703--736}, publisher = {mathdoc}, volume = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/} }
TY - JOUR AU - I. N. Kiselev AU - B. V. Semisalov AU - E. A. Biberdorf AU - R. N. Sharipov AU - A. M. Blokhin AU - F. A. Kolpakov TI - Modular Modeling of the Human Cardiovascular System JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 703 EP - 736 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/ LA - ru ID - MBB_2012_7_a18 ER -
%0 Journal Article %A I. N. Kiselev %A B. V. Semisalov %A E. A. Biberdorf %A R. N. Sharipov %A A. M. Blokhin %A F. A. Kolpakov %T Modular Modeling of the Human Cardiovascular System %J Matematičeskaâ biologiâ i bioinformatika %D 2012 %P 703-736 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/ %G ru %F MBB_2012_7_a18
I. N. Kiselev; B. V. Semisalov; E. A. Biberdorf; R. N. Sharipov; A. M. Blokhin; F. A. Kolpakov. Modular Modeling of the Human Cardiovascular System. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 703-736. http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/
[1] Solodyannikov Yu. V., Elementy matematicheskogo modelirovaniya i identifikatsiya sistemy krovoobrascheniya, Izd-vo Samar. un-ta, Samara, 1994, 316 pp.
[2] Karaaslan F., Denizhan Y., Kayserilioglu A., Ozcan Gulcur H., “Long-term mathematical model involving renal sympathetic nerve activity, arterial pressure, and sodium excretion”, Ann. Biomed. Eng., 33:11 (2005), 1607–1630 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439-005-5976-4'>10.1007/s10439-005-5976-4</ext-link>
[3] Guyton A. C., Coleman T. G., Granger H. J., “Circulation: Overall regulation”, Ann. Rev. Physiol., 34 (1972), 13–46 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.ph.34.030172.000305'>10.1146/annurev.ph.34.030172.000305</ext-link>
[4] Coleman T. G., Hall J. E., A mathematical model of renal hemodynamics and excretory function Structuring Biological Systems: A Computer Modelling Approach, ed. Iyengar S. S., CRC Press, Boca Raton, Florida, 1992, 89–124
[5] Uttamsingh R. J., Leaning M. S., Bushman J. A., Carson E. R., Finkelstein L., “Mathematical model of the human renal system”, Med. Biol. Eng. Comput., 23 (1985), 525–535 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02455306'>10.1007/BF02455306</ext-link>
[6] Lamponi D., One dimensional and multiscale model for blood flow circulation, Ph. D. Thesis No 3006, Ecole Polytechnique Federale De Lausanne, Lausanne, 2004 (data obrascheniya: 19.12.2012) <ext-link ext-link-type='uri' href='http://infoscience.epfl.ch/record/33478/files/EPFL_TH3006.pdf'>http://infoscience.epfl.ch/record/33478/files/EPFL_TH3006.pdf</ext-link>
[7] Holstein-Rathlou N. H., Marsh D. J., “A dynamic model of renal blood flow autoregulation”, Bull. Math. Biol., 56:3 (1994), 411–429 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02460465'>10.1007/BF02460465</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0803.92011'>0803.92011</ext-link>
[8] Judas L., Bentzen S. M., Stewart F. A., “Progression rate of radiation damage to the mouse kidney: a quantitative analysis of experimental data using a simple mathematical model of the nephron”, Int. J. Radiat. Biol., 72:4 (1997), 461–473 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/095530097143239'>10.1080/095530097143239</ext-link>
[9] Proshin A. P., Solodyannikov Y. V., “Mathematical modeling of blood circulation system and its practical application”, Automat. Rem. Contr., 67:2 (2006), 329–341 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S000511790602010X'>10.1134/S000511790602010X</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2210466'>2210466</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1126.92307'>1126.92307</ext-link>
[10] Snoep J. L., Bruggeman F., Olivier B. G., Westerhoff H. V., “Towards building the silicon cell: a modular approach”, Biosystems, 83:2–3 (2006), 207–216 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biosystems.2005.07.006'>10.1016/j.biosystems.2005.07.006</ext-link>
[11] Randhawa R., Shaffer C. A., Tyson J. J., “Model Composition for Macromolecular Regulatory Networks”, IEEE/ACM Trans. Comput. Biol. Bioinform., 7:2 (2010), 278–287 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TCBB.2008.64'>10.1109/TCBB.2008.64</ext-link>
[12] Hernández A. I., Le Rolle V., Defontaine A., Carrault G., “A Multiformalism and Multiresolution Modelling Environment: Application to the cardiovascular system and its regulation”, Philos. Transact. A: Math. Phys. Eng. Sci., 367:1908 (2009), 4923–4940 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2009.0163'>10.1098/rsta.2009.0163</ext-link>
[13] Fenner J. W., Brook B., Clapworthy G., Coveney P. V., Feipel V., Gregersen H., Hose D. R., Kohl P., Lawford P., McCormack K. M., Pinney D., Thomas S. R., Van Sint Jan S., Waters S., Viceconti M., “The EuroPhysiome, STEP and a roadmap for the virtual physiological human”, Phil. Trans. R. Soc., 366:1878 (2008), 2979–2999 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2008.0089'>10.1098/rsta.2008.0089</ext-link>
[14] Perez L., Dragicevic S., “An agent-based approach for modeling dynamics of contagious disease spread”, Int. J. Health Geogr., 8:1 (2009), 50 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1476-072X-8-50'>10.1186/1476-072X-8-50</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1187.83005'>1187.83005</ext-link>
[15] Chany N. T., LeBaronz B., Loyy A. W., Poggiozz T., Agent-Based Models of Financial Markets: A Comparison with Experimental Markets, Working Paper, 1999
[16] Glenn Elert, Volume of Blood in a Human. The Physics Factbook$^{\mathrm{TM}}$ (data obrascheniya: 01.03.2012) <ext-link ext-link-type='uri' href='http://hypertextbook.com/facts/1998/LanNaLee.shtml'>http://hypertextbook.com/facts/1998/LanNaLee.shtml</ext-link>
[17] “Funktsionalnye metody issledovaniya pochek”, Meditsinskaya entsiklopediya (data obrascheniya: 01.03.2012) <ext-link ext-link-type='uri' href='http://www.medical-enc.ru/m/15/funktsionalnye-metody-issledovania-pochek-3.shtml'>http://www.medical-enc.ru/m/15/funktsionalnye-metody-issledovania-pochek-3.shtml</ext-link>
[18] Navar L. G., Hamm L. L., “The kidney in blood pressure regulation”, Atlas of Diseases of the Kidney. Hypertension and the Kidney, ed. Wilcox C. S., Current Medicine, Philadelphia, 1999, 1.1–1.22
[19] Bendel P., Buonocore E., Bockisch A., Besozzi M. C., “Blood flow in the carotid arteries: quantification by using phase-sensitive MR imaging”, Am. J. Roentgenol., 152:6 (1989), 1307–1310