Modular Modeling of the Human Cardiovascular System
Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 703-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a complex model of the human cardiovascular system (CVS) created by integration of several preexisted mathematical models, utilizing different formalisms: one-dimensional model of the human arterial system, a heart contraction model and a long-term kidney regulation model. Models integration was conducted with modular and agent-based modeling approaches applying. Those approaches were implemented as a plugin on the for BioUML — software for formal description and simulation of biological systems. The plugin allows graphical creation of agent-based models as modular diagrams comprising interconnected blocks (modules) and numerical simulation. All models were implemented in BioUML, adjusted and integrated in the complex model of the human CVS. The complex model was tested and preliminary results for a classic human CVS pathology were obtained. All models are available as a part of the BioUML software at www.biouml.org.
@article{MBB_2012_7_a18,
     author = {I. N. Kiselev and B. V. Semisalov and E. A. Biberdorf and R. N. Sharipov and A. M. Blokhin and F. A. Kolpakov},
     title = {Modular {Modeling} of the {Human} {Cardiovascular} {System}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {703--736},
     publisher = {mathdoc},
     volume = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/}
}
TY  - JOUR
AU  - I. N. Kiselev
AU  - B. V. Semisalov
AU  - E. A. Biberdorf
AU  - R. N. Sharipov
AU  - A. M. Blokhin
AU  - F. A. Kolpakov
TI  - Modular Modeling of the Human Cardiovascular System
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2012
SP  - 703
EP  - 736
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/
LA  - ru
ID  - MBB_2012_7_a18
ER  - 
%0 Journal Article
%A I. N. Kiselev
%A B. V. Semisalov
%A E. A. Biberdorf
%A R. N. Sharipov
%A A. M. Blokhin
%A F. A. Kolpakov
%T Modular Modeling of the Human Cardiovascular System
%J Matematičeskaâ biologiâ i bioinformatika
%D 2012
%P 703-736
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/
%G ru
%F MBB_2012_7_a18
I. N. Kiselev; B. V. Semisalov; E. A. Biberdorf; R. N. Sharipov; A. M. Blokhin; F. A. Kolpakov. Modular Modeling of the Human Cardiovascular System. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 703-736. http://geodesic.mathdoc.fr/item/MBB_2012_7_a18/

[1] Solodyannikov Yu. V., Elementy matematicheskogo modelirovaniya i identifikatsiya sistemy krovoobrascheniya, Izd-vo Samar. un-ta, Samara, 1994, 316 pp.

[2] Karaaslan F., Denizhan Y., Kayserilioglu A., Ozcan Gulcur H., “Long-term mathematical model involving renal sympathetic nerve activity, arterial pressure, and sodium excretion”, Ann. Biomed. Eng., 33:11 (2005), 1607–1630 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s10439-005-5976-4'>10.1007/s10439-005-5976-4</ext-link>

[3] Guyton A. C., Coleman T. G., Granger H. J., “Circulation: Overall regulation”, Ann. Rev. Physiol., 34 (1972), 13–46 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.ph.34.030172.000305'>10.1146/annurev.ph.34.030172.000305</ext-link>

[4] Coleman T. G., Hall J. E., A mathematical model of renal hemodynamics and excretory function Structuring Biological Systems: A Computer Modelling Approach, ed. Iyengar S. S., CRC Press, Boca Raton, Florida, 1992, 89–124

[5] Uttamsingh R. J., Leaning M. S., Bushman J. A., Carson E. R., Finkelstein L., “Mathematical model of the human renal system”, Med. Biol. Eng. Comput., 23 (1985), 525–535 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02455306'>10.1007/BF02455306</ext-link>

[6] Lamponi D., One dimensional and multiscale model for blood flow circulation, Ph. D. Thesis No 3006, Ecole Polytechnique Federale De Lausanne, Lausanne, 2004 (data obrascheniya: 19.12.2012) <ext-link ext-link-type='uri' href='http://infoscience.epfl.ch/record/33478/files/EPFL_TH3006.pdf'>http://infoscience.epfl.ch/record/33478/files/EPFL_TH3006.pdf</ext-link>

[7] Holstein-Rathlou N. H., Marsh D. J., “A dynamic model of renal blood flow autoregulation”, Bull. Math. Biol., 56:3 (1994), 411–429 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/BF02460465'>10.1007/BF02460465</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0803.92011'>0803.92011</ext-link>

[8] Judas L., Bentzen S. M., Stewart F. A., “Progression rate of radiation damage to the mouse kidney: a quantitative analysis of experimental data using a simple mathematical model of the nephron”, Int. J. Radiat. Biol., 72:4 (1997), 461–473 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/095530097143239'>10.1080/095530097143239</ext-link>

[9] Proshin A. P., Solodyannikov Y. V., “Mathematical modeling of blood circulation system and its practical application”, Automat. Rem. Contr., 67:2 (2006), 329–341 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S000511790602010X'>10.1134/S000511790602010X</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2210466'>2210466</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1126.92307'>1126.92307</ext-link>

[10] Snoep J. L., Bruggeman F., Olivier B. G., Westerhoff H. V., “Towards building the silicon cell: a modular approach”, Biosystems, 83:2–3 (2006), 207–216 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biosystems.2005.07.006'>10.1016/j.biosystems.2005.07.006</ext-link>

[11] Randhawa R., Shaffer C. A., Tyson J. J., “Model Composition for Macromolecular Regulatory Networks”, IEEE/ACM Trans. Comput. Biol. Bioinform., 7:2 (2010), 278–287 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TCBB.2008.64'>10.1109/TCBB.2008.64</ext-link>

[12] Hernández A. I., Le Rolle V., Defontaine A., Carrault G., “A Multiformalism and Multiresolution Modelling Environment: Application to the cardiovascular system and its regulation”, Philos. Transact. A: Math. Phys. Eng. Sci., 367:1908 (2009), 4923–4940 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2009.0163'>10.1098/rsta.2009.0163</ext-link>

[13] Fenner J. W., Brook B., Clapworthy G., Coveney P. V., Feipel V., Gregersen H., Hose D. R., Kohl P., Lawford P., McCormack K. M., Pinney D., Thomas S. R., Van Sint Jan S., Waters S., Viceconti M., “The EuroPhysiome, STEP and a roadmap for the virtual physiological human”, Phil. Trans. R. Soc., 366:1878 (2008), 2979–2999 <ext-link ext-link-type='doi' href='https://doi.org/10.1098/rsta.2008.0089'>10.1098/rsta.2008.0089</ext-link>

[14] Perez L., Dragicevic S., “An agent-based approach for modeling dynamics of contagious disease spread”, Int. J. Health Geogr., 8:1 (2009), 50 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1476-072X-8-50'>10.1186/1476-072X-8-50</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1187.83005'>1187.83005</ext-link>

[15] Chany N. T., LeBaronz B., Loyy A. W., Poggiozz T., Agent-Based Models of Financial Markets: A Comparison with Experimental Markets, Working Paper, 1999

[16] Glenn Elert, Volume of Blood in a Human. The Physics Factbook$^{\mathrm{TM}}$ (data obrascheniya: 01.03.2012) <ext-link ext-link-type='uri' href='http://hypertextbook.com/facts/1998/LanNaLee.shtml'>http://hypertextbook.com/facts/1998/LanNaLee.shtml</ext-link>

[17] “Funktsionalnye metody issledovaniya pochek”, Meditsinskaya entsiklopediya (data obrascheniya: 01.03.2012) <ext-link ext-link-type='uri' href='http://www.medical-enc.ru/m/15/funktsionalnye-metody-issledovania-pochek-3.shtml'>http://www.medical-enc.ru/m/15/funktsionalnye-metody-issledovania-pochek-3.shtml</ext-link>

[18] Navar L. G., Hamm L. L., “The kidney in blood pressure regulation”, Atlas of Diseases of the Kidney. Hypertension and the Kidney, ed. Wilcox C. S., Current Medicine, Philadelphia, 1999, 1.1–1.22

[19] Bendel P., Buonocore E., Bockisch A., Besozzi M. C., “Blood flow in the carotid arteries: quantification by using phase-sensitive MR imaging”, Am. J. Roentgenol., 152:6 (1989), 1307–1310