Experimental model of neuronal network learning in dissociated hippocampal cultures
Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 545-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basic principles of learning in neural networks are widely studied with the experimental model of dissociated cultures of neurons on microelectrode arrays. This approach allows local stimulation and recording of neuronal activity. It was shown that neural networks developed in dissociated neural culture can be conditioned to reply via defined electrode on electrical stimulation. There are still problems with stability and reproducibility of conditioned replies in this experimental paradigm. In our work we propose new method of neuronal culture conditioning that allows higher stability and reproducibility of learned replies.
@article{MBB_2012_7_a13,
     author = {A. S. Pimashkin and A. A. Gladkov and I. V. Mukhina and M. S. Burtsev and V. A. Ilyin and V. B. Kazantsev},
     title = {Experimental model of neuronal network learning in dissociated hippocampal cultures},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {545--553},
     publisher = {mathdoc},
     volume = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a13/}
}
TY  - JOUR
AU  - A. S. Pimashkin
AU  - A. A. Gladkov
AU  - I. V. Mukhina
AU  - M. S. Burtsev
AU  - V. A. Ilyin
AU  - V. B. Kazantsev
TI  - Experimental model of neuronal network learning in dissociated hippocampal cultures
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2012
SP  - 545
EP  - 553
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2012_7_a13/
LA  - ru
ID  - MBB_2012_7_a13
ER  - 
%0 Journal Article
%A A. S. Pimashkin
%A A. A. Gladkov
%A I. V. Mukhina
%A M. S. Burtsev
%A V. A. Ilyin
%A V. B. Kazantsev
%T Experimental model of neuronal network learning in dissociated hippocampal cultures
%J Matematičeskaâ biologiâ i bioinformatika
%D 2012
%P 545-553
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2012_7_a13/
%G ru
%F MBB_2012_7_a13
A. S. Pimashkin; A. A. Gladkov; I. V. Mukhina; M. S. Burtsev; V. A. Ilyin; V. B. Kazantsev. Experimental model of neuronal network learning in dissociated hippocampal cultures. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 545-553. http://geodesic.mathdoc.fr/item/MBB_2012_7_a13/

[1] Maccione A., Garofalo M., Nieus T., Tedesco M., Berdondini L., Martinoia S., “Multiscale functional connectivity estimation on low-density neuronal cultures recorded by high-density CMOS Micro Electrode Arrays”, J. Neurosci. Methods, 9 (2012)

[2] Frega M., Pasquale V., Tedesco M., Marcoli M., Contestabile A., Nanni M., Bonzano L., Maura G., Chiappalone M., “Cortical cultures coupled to Micro-Electrode Arrays: a novel approach to perform in vitro excitotoxicity testing”, Neurotoxicol Teratol, 34:1 (2012), 116–127 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.ntt.2011.08.001'>10.1016/j.ntt.2011.08.001</ext-link>

[3] le Feber J., Stegenga J., Rutten W. L. C., “The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons”, PLoS ONE, 5:1 (2010), 8871

[4] Raichman N., Ben-Jacob E., “Identifying repeating motifs in the activation of synchronized bursts in cultured neuronal networks”, Journal of neuroscience methods, 170:1 (2008), 96–110 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jneumeth.2007.12.020'>10.1016/j.jneumeth.2007.12.020</ext-link>

[5] Shahaf G., Eytan D., Gal A., Kermany E., Lyakhov V., Zrenner C., Marom S., “Order-Based Representation in Random Networks of Cortical Neurons”, PLoS Comput Biol., 4:11 (2008), 1000228 <ext-link ext-link-type='doi' href='https://doi.org/10.1371/journal.pcbi.1000228'>10.1371/journal.pcbi.1000228</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2470159'>2470159</ext-link>

[6] Kermany E., Gal A., Lyakhov V., Meir R., Marom S., Eytan D., “Tradeoffs and Constraints on Neural Representation in Networks of Cortical Neurons”, J. Neurosci., 30:28 (2010), 9588–9596

[7] Lebedev R. D., Burtsev M. S., “Klasterizatsiya pachek spontannoi aktivnosti neironalnoi kultury”, Neiroinformatika 2010, v 2-kh chastyakh, v. 1, NIYaU MIFI, M., 2010, 296–303

[8] Xydas D., Downes J. H., Spencer M. C., Hammond M. W., Nasuto S. J., Whalley B. J., Becerra V. M., Warwick K., “Revealing Ensemble State Transition Patterns in Multi-Electrode Neuronal Recordings Using Hidden Markov Models”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19:4 (2011), 345–355 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TNSRE.2011.2157360'>10.1109/TNSRE.2011.2157360</ext-link>

[9] Pimashkin A., Kastalskiy I., Simonov A., Koryagina E., Mukhina I., Kazantsev V., “Spiking Signatures of Spontaneous Activity Bursts in Hippocampal Cultures”, Front Comput Neurosci., 5 (2011), 46 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fncom.2011.00046'>10.3389/fncom.2011.00046</ext-link>

[10] Potter S. M., “Closing the Loop Between Neurons and Neurotechnology”, Front Neurosci., 4 (2010), 15 <ext-link ext-link-type='doi' href='https://doi.org/10.3389/fnins.2010.00015'>10.3389/fnins.2010.00015</ext-link>

[11] Maeda E., Robinson H. P. C., Kawana A., “The mechanism of generation and propagation of synchronized bursting in developing networks of cortical neurons”, J. Neurosci., 15 (1995), 6834–6845

[12] Wagenaar D. A., Pine J., Potter S. M., “Effective parameters for stimulation of dissociated cultures using multi-electrode arrays”, J. Neurosci. Meth., 138 (2004), 27–37 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jneumeth.2004.03.005'>10.1016/j.jneumeth.2004.03.005</ext-link>

[13] Wagenaar D. A., Madhavan R., Pine J., Potter S. M., “Controlling Bursting in Cortical Cultures with Closed-Loop Multi-Electrode Stimulation”, The Journal of Neuroscience, 25:3 (2005), 680–688 <ext-link ext-link-type='doi' href='https://doi.org/10.1523/JNEUROSCI.4209-04.2005'>10.1523/JNEUROSCI.4209-04.2005</ext-link>

[14] Shahaf G., Marom S., “Learning in networks of cortical neurons”, J. Neurosci., 21 (2001), 8782–8788

[15] Chiappalone M., Massobrio P., Martinoia S., “Network plasticity in cortical assemblies”, Eur. J. Neurosci., 28 (2008), 221–237 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1460-9568.2008.06259.x'>10.1111/j.1460-9568.2008.06259.x</ext-link>

[16] Bologna L. L., Nieus T., Tedesco M., Chiappalone M., Benfenati F., Martinoia S., “Low-frequency stimulation enhances burst activity in cortical cultures during development”, Neuroscience, 3:165 (2010), 692–704 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.neuroscience.2009.11.018'>10.1016/j.neuroscience.2009.11.018</ext-link>

[17] Brewer G. J., Boehler M. D., Ide A. N., “Wheeler Chronic electrical stimulation of cultured hippocampal networks increases spontaneous spike rates”, Journal of Neuroscience Methods, 184 (2009), 104–109 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jneumeth.2009.07.031'>10.1016/j.jneumeth.2009.07.031</ext-link>

[18] Ide A. N., Andruska A., Boehler M., Wheeler B. C., Brewer G. J., “Chronic network stimulation enhances evoked action potentials”, Journal of Neural Engineering, 7:1 (2010), 016008 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1741-2560/7/1/016008'>10.1088/1741-2560/7/1/016008</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2577130'>2577130</ext-link>

[19] Marom S., Shahaf G., “Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy”, Q Rev. Biophys., 35 (2002), 63–87 <ext-link ext-link-type='doi' href='https://doi.org/10.1017/S0033583501003742'>10.1017/S0033583501003742</ext-link>

[20] Yanling Li, Wei Zhou, Xiangning Li, Shaoqun Zeng, Qingming Luo, “Dynamics of Learning in Cultured Neuronal Networks with Antagonists of Glutamate Receptors”, Biophysical Journal, 93:12 (2007), 4151–4158 <ext-link ext-link-type='doi' href='https://doi.org/10.1529/biophysj.107.111153'>10.1529/biophysj.107.111153</ext-link>

[21] Stegenga J., Le Feber J., Marani E., Rutten W. L. C., “The Effect of Learning on Bursting”, Biomedical Engineering, 56:4 (2009), 1220–1227 <ext-link ext-link-type='doi' href='https://doi.org/10.1109/TBME.2008.2006856'>10.1109/TBME.2008.2006856</ext-link>

[22] Staveren G. W., Buitenweg J. R., Marani E., Rutten W. L. C., The effect of training of cultured neuronal networks, can they learn?, Neural Engineering Conference Proceedings, 2005, 328–331

[23] Eytan D., Brenner N., Marom S., “Selective Adaptation in Networks of Cortical Neurons”, The Journal of Neuroscience, 23:28 (2003), 9349–9356

[24] Mukhina I. V., Iudin D. I., Zakharov Yu. N., Simonov A. Yu., Pimashkin A. S., Kazantsev V. B., “Stabilnost i variabilnost patternov setevoi aktivnosti razvivayuschikhsya neironalnykh setei mozga: biologicheskie i matematicheskie modeli”, Trudy nauchnoi sessii NIYaU MIFI-2010, v. 3, NIYaU MIFI, M., 2010, 184–192

[25] Quiroga R., Nadasdy Q., Ben-Shaul Y., “Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering”, Neural Computation, 16 (2004), 1661–1688 <ext-link ext-link-type='doi' href='https://doi.org/10.1162/089976604774201631'>10.1162/089976604774201631</ext-link>

[26] Wagenaar D. A., Pine J., Potter S. M., “Searching for plasticity in dissociated cortical cultures on multi-electrode arrays”, J. Negat. Results Biomed., 5 (2006), 6 <ext-link ext-link-type='doi' href='https://doi.org/10.1186/1477-5751-5-16'>10.1186/1477-5751-5-16</ext-link>