Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_a12, author = {S. S. Makarov and E. A. Grachev and T. K. Antal}, title = {Mathematical {Modeling} of {Photosynthetic} {Electron} {Transport} {Chain} {Considering} {Spatial} {Heterogeneity} of the {Thylakoid} {Membrane}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {508--528}, publisher = {mathdoc}, volume = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a12/} }
TY - JOUR AU - S. S. Makarov AU - E. A. Grachev AU - T. K. Antal TI - Mathematical Modeling of Photosynthetic Electron Transport Chain Considering Spatial Heterogeneity of the Thylakoid Membrane JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 508 EP - 528 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_a12/ LA - ru ID - MBB_2012_7_a12 ER -
%0 Journal Article %A S. S. Makarov %A E. A. Grachev %A T. K. Antal %T Mathematical Modeling of Photosynthetic Electron Transport Chain Considering Spatial Heterogeneity of the Thylakoid Membrane %J Matematičeskaâ biologiâ i bioinformatika %D 2012 %P 508-528 %V 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2012_7_a12/ %G ru %F MBB_2012_7_a12
S. S. Makarov; E. A. Grachev; T. K. Antal. Mathematical Modeling of Photosynthetic Electron Transport Chain Considering Spatial Heterogeneity of the Thylakoid Membrane. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 508-528. http://geodesic.mathdoc.fr/item/MBB_2012_7_a12/
[1] Rubin A. B., Biofizika, v. 2, Vysshaya shkola, M., 2000, 461 pp.
[2] Govindje E., “Sixty-three years since Kautsky: Chlorophyll a Fluorescence”, Australian Journal of Plant Physiology, 22 (1995), 131–160 <ext-link ext-link-type='doi' href='https://doi.org/10.1071/PP9950131'>10.1071/PP9950131</ext-link>
[3] Strasser R. J., Srivastava A., Govindjee E., “Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria”, Photochemistry and Photobiology, 61 (1995), 32–42 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1751-1097.1995.tb09240.x'>10.1111/j.1751-1097.1995.tb09240.x</ext-link>
[4] Lazar D., “Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity”, Journal of Theoretical Biology, 220 (2003), 469–503 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.2003.3140'>10.1006/jtbi.2003.3140</ext-link>
[5] Vernotte C., Etienne A. L., Briantais J. M., “Quenching of the system II chlorophyll fluorescence by the plastoquinone pool”, Biochimica et Biophysica Acta, 545 (1979), 519–527 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0005-2728(79)90160-9'>10.1016/0005-2728(79)90160-9</ext-link>
[6] Stirbet A., Govindjee E., Strasser B. J., Strasser R., “Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation”, Journal of Theoretical Biology, 193 (1998), 131–151 <ext-link ext-link-type='doi' href='https://doi.org/10.1006/jtbi.1998.0692'>10.1006/jtbi.1998.0692</ext-link>
[7] Riznichenko G. Yu., Lebedeva G. V., Demin O. V., Rubin A. B., “Kinetic mechanisms of biological regulation in photosynthetic organisms”, Journal of Biological Physics, 25 (1999), 177–192 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1005101703188'>10.1023/A:1005101703188</ext-link>
[8] Lebedeva G. V., Belyaeva N. E., Demin O. V., Riznichenko G. Yu., Rubin A. B., “Kinetic model of primary photosynthetic processes in chloroplasts description of the fast phase of chlorophyll fluorescence induction under different light intensities”, Biophysics, 47 (2002), 968–980
[9] Zhu X.-G., Govindjee E., Baker N. R., DeSturler E., Ort D. R., Long S. P., “Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with Photosystem, II”, Planta, 223 (2005), 114–133 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00425-005-0064-4'>10.1007/s00425-005-0064-4</ext-link>
[10] Jablonsky J., Lazar D., “Evidence for intermediate S-States as initial phase in the process of oxygen-evolving complex oxidation”, Biophysical Journal, 94 (2008), 2725–2736 <ext-link ext-link-type='doi' href='https://doi.org/10.1529/biophysj.107.122861'>10.1529/biophysj.107.122861</ext-link>
[11] Riznichenko G. Yu., Belyaeva N. E., Kovalenko I. B., Rubin A. B., “Mathematical and computer modeling of primary photosynthetic processes”, Biophysics, 54 (2009), 10–22 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0006350909010035'>10.1134/S0006350909010035</ext-link>
[12] Belyaeva N. E., Schmitt B.-J., Paschenko V. Z., Riznichenko G. Yu., Rubin A. B., Renger G., “PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies”, BioSystems, 103 (2011), 188–195 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biosystems.2010.09.014'>10.1016/j.biosystems.2010.09.014</ext-link>
[13] Schansker G., Toth S. Z., Strasser R. J., “Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP”, Biochimica et Biophysica Acta, 1706 (2005), 250–261 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbabio.2004.11.006'>10.1016/j.bbabio.2004.11.006</ext-link>
[14] Antal T., Rubin A., “In vivo analysis of chlorophyll a fluorescence induction”, Photosynthesis Research, 96:3 (2008), 217–226 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11120-008-9301-6'>10.1007/s11120-008-9301-6</ext-link>
[15] Schansker G., Tóth S. Z., Strasser R. J., “Dark recovery of the Chl $a$ fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side”, Biochimica et Biophysica Acta, 1757 (2006), 787–797 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbabio.2006.04.019'>10.1016/j.bbabio.2006.04.019</ext-link>
[16] Talts E., Oja V., Rämma H., Rasulov B., Anijalg A., Laisk A., “Dark inactivation of ferredoxin-NADP reductase and cyclic electron flow under far-red light in sunflower leaves”, Photosynthesis Research, 94 (2007), 109–120 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s11120-007-9224-7'>10.1007/s11120-007-9224-7</ext-link>
[17] Schansker G., Srivastava A., Govindjee, Strasser R. J., “Characterization of the 820-nm transmission signal paralleling the chlorophyll $a$ fluorescence rise (OJIP) in pea leaves”, Functional Plant Biology, 30 (2003), 785–796 <ext-link ext-link-type='doi' href='https://doi.org/10.1071/FP03032'>10.1071/FP03032</ext-link>
[18] Staehelin L. A., “Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes”, Photosynthesis Research, 76 (2003), 185–196 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1024994525586'>10.1023/A:1024994525586</ext-link>
[19] Albertsson P. A., “A quantitative model of the domain structure of the photosynthetic membrane”, TRIENDS in Plant Science, 6:8 (2001), 349–355 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1360-1385(01)02021-0'>10.1016/S1360-1385(01)02021-0</ext-link>
[20] Vershubskii A. V., Priklonskii V. I., Tikhonov A. N., “Matematicheskaya model elektronnogo i protonnogo transporta v fotosinteticheskikh sistemakh oksigennogo tipa”, Rossiiskii khimicheskii zhurnal, LI (2007), 59–69
[21] Vershubskii A. V., Kuvykin I. V., Priklonskii V. I., Tikhonov A. N., “Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico”, BioSystems, 103 (2011), 164–179 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biosystems.2010.08.002'>10.1016/j.biosystems.2010.08.002</ext-link>
[22] Shahak Y., “Activation and deactivation of $\mathrm{H}+$-ATPase in intact chloroplasts”, Plant Physiology, 70 (1982), 87–91 <ext-link ext-link-type='doi' href='https://doi.org/10.1104/pp.70.1.87'>10.1104/pp.70.1.87</ext-link>
[23] Tikhonov A. N., “Regulyatsiya svetovykh i temnovykh stadii fotosinteza”, Sorosovskii obrazovatelnyi zhurnal, 1999, no. 11, 8–15
[24] Cramer W. A., Zhang H., Yan J., Kurisu G., Smith J. L., “Trans-membrane traffic in the cytochrome b6f complex”, Annual Review of Biochem., 75 (2006), 769–790 <ext-link ext-link-type='doi' href='https://doi.org/10.1146/annurev.biochem.75.103004.142756'>10.1146/annurev.biochem.75.103004.142756</ext-link>
[25] Joliot P., Joliot A., “Quantification of cyclic and linear flows in plants”, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 4913–4918 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0501268102'>10.1073/pnas.0501268102</ext-link>
[26] Aoki M., Katoh S., “Size of the Plastoquinone Pool Functioning in Photosynthetic and Respiratory Electron Transport of Synechococcus sp”, Plant & Cell Physiology, 24:8 (1983), 1379–1386
[27] Bohme H., “Quantitative determination of ferredoxin. Ferredoxin-NADP-reductase and plastocyanin in spinach chloroplasts”, European Journal of Biochemistry, 83 (1978), 137–141 <ext-link ext-link-type='doi' href='https://doi.org/10.1111/j.1432-1033.1978.tb12077.x'>10.1111/j.1432-1033.1978.tb12077.x</ext-link>
[28] Mitchell R., Spillmann A., Haehnel W., “Plastoquinol diffusion in linear photosynthetic electron transport”, Biophysical Journal, 58 (1990), 1011–1024 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0006-3495(90)82445-0'>10.1016/S0006-3495(90)82445-0</ext-link>
[29] Sanderson D. G., Anderson L. B., Gross E. L., “Determination of the redox potential and diffusion coefficient of the protein plastocyanin using optically transparent filar electrodes”, Biochimica et Biophysica Acta, 852 (1986), 269–278 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0005-2728(86)90232-X'>10.1016/0005-2728(86)90232-X</ext-link>
[30] Takano M., Takahashi M.-A., Asada K., “Reduction of photosystem I reaction center, P-700, by plastocyanin in stroma thylakoids from spinach: lateral diffusion of plastocyanin”, Archives of Biochemistry and Biophysics, 218 (1982), 369–375 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0003-9861(82)90358-7'>10.1016/0003-9861(82)90358-7</ext-link>
[31] Nobel P. S., Physicochemical and environmental plant physiology, 2nd edition, Academic Press, San Diego, 2009, 540 pp.
[32] Hope A. B., “Electron transfers amongst cytochrome f, plastocyanin and photosystem. I: Kinetics and mechanisms”, Biochimica et Biophysica, 1456 (2002), 5–26 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0005-2728(99)00101-2'>10.1016/S0005-2728(99)00101-2</ext-link>
[33] Kovalenko I. B., Abaturova A. M., Riznichenko G. Yu., Rubin A. B., “Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin”, BioSystems, 103 (2011), 180–187 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.biosystems.2010.09.013'>10.1016/j.biosystems.2010.09.013</ext-link>
[34] Kovalenko I. B., Diakonova A. M., Abaturova A. M., Riznichenko G. Yu., Rubin A. B., “Direct computer simulation of ferredoxin and FNR complex formation in solution”, Phys. Biol., 7:2 (2010), 026001 <ext-link ext-link-type='doi' href='https://doi.org/10.1088/1478-3975/7/2/026001'>10.1088/1478-3975/7/2/026001</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=324790'>324790</ext-link>
[35] Trissl H. W., Lavergne J., “Fluorescence induction from photosystem. II: Analytical equations for the yields of photochemistry and fluorescence derived from analysis of a model including exciton-radical pair equilibrium and restricted energytransfer between photosynthetic units”, Australian Journal of Plant Physiology, 22 (1995), 183–193 <ext-link ext-link-type='doi' href='https://doi.org/10.1071/PP9950183'>10.1071/PP9950183</ext-link>
[36] Lavergne J., Trissl H. W., “Theory of fluorescence induction in photosystem. II: Derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units”, Biophysical Journal, 68 (1995), 2474–2492 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0006-3495(95)80429-7'>10.1016/S0006-3495(95)80429-7</ext-link>
[37] Hoagland D. R., Arnon D. I., “The water-culture method for growing plants without soil”, California Agricultural Experiment Station Circular, 347 (1950), 1–32
[38] Antal T., Mattila H., Hakala-Yatkin M., Tyystjarvi T., Tyystjarvi E., “Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris”, Planta, 232:4 (2010), 887–898 <ext-link ext-link-type='doi' href='https://doi.org/10.1007/s00425-010-1227-5'>10.1007/s00425-010-1227-5</ext-link>
[39] Rich P. R., Madwick S. A., Moss D. A., “The interactions of duroquinol, DBMIB and NQNO with the chloroplast cytochrome bf complex”, Biochimica et Biophysica Acta, 1058 (1991), 312 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0005-2728(05)80252-X'>10.1016/S0005-2728(05)80252-X</ext-link>
[40] Allen J. F., “Induction of a Mehler reaction in chloroplast preparations by methyl viologen and by ferredoxin: effects on photosynthesis by intact chloroplasts”, Plant Science Letters, 12 (1978), 161–167 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0304-4211(78)90149-9'>10.1016/0304-4211(78)90149-9</ext-link>
[41] Bukhov N., Egorova E., Krendeleva T., Rubin A., Wiese C., Heber U., “Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers”, Photosynthesis Research, 70 (2001), 155–166 <ext-link ext-link-type='doi' href='https://doi.org/10.1023/A:1017950307360'>10.1023/A:1017950307360</ext-link>
[42] Rochaix J.-D., “Reprint of: Regulation of photosynthetic electron transport”, Biochimica et Biophysica Acta, 1807 (2011), 878–886 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bbabio.2011.05.009'>10.1016/j.bbabio.2011.05.009</ext-link>