RISM integral equation theory in study of thermodynamics of self-assembling ionic peptides
Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 493-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new modification of the Reference Interaction Site Model was used to evaluate thermodynamic characteristics of self-organizing peptide complexes. The modified variant allows one to use average matrix of intramolecular correlation functions. This approach is effective for analyzing Gibbs free energy and the structure of the first solvate shield of a macromolecule, which has many configurational states. To calculate Gibbs energy we used both approximate formulas and the method of numerical thermodynamic integration. Comparison of the results of free energy values calculated by other commonly used methods demonstrates that thermodynamic integration yields the most adequate values of interaction energies for a panel of peptide nanostructures and protofilaments. Conclusions were made on the applicability of the compared methods to the study of complex polar peptide structures.
@article{MBB_2012_7_a11,
     author = {E. V. Sobolev and A. V. Danilkovich and D. A. Tikhonov},
     title = {RISM integral equation theory in study of thermodynamics of self-assembling ionic peptides},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {493--507},
     publisher = {mathdoc},
     volume = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a11/}
}
TY  - JOUR
AU  - E. V. Sobolev
AU  - A. V. Danilkovich
AU  - D. A. Tikhonov
TI  - RISM integral equation theory in study of thermodynamics of self-assembling ionic peptides
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2012
SP  - 493
EP  - 507
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2012_7_a11/
LA  - ru
ID  - MBB_2012_7_a11
ER  - 
%0 Journal Article
%A E. V. Sobolev
%A A. V. Danilkovich
%A D. A. Tikhonov
%T RISM integral equation theory in study of thermodynamics of self-assembling ionic peptides
%J Matematičeskaâ biologiâ i bioinformatika
%D 2012
%P 493-507
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2012_7_a11/
%G ru
%F MBB_2012_7_a11
E. V. Sobolev; A. V. Danilkovich; D. A. Tikhonov. RISM integral equation theory in study of thermodynamics of self-assembling ionic peptides. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 493-507. http://geodesic.mathdoc.fr/item/MBB_2012_7_a11/

[1] Honig B., Sharp K., Yang A. S., “Macroscopic models of aqueous solutions: biological and chemical applications”, The Journal of Physical Chemistry, 97 (1993), 1101–1109 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100108a002'>10.1021/j100108a002</ext-link>

[2] Still W. C., Tempczyk A., Hawley R. C., Hendrickson T., “Semianalytical treatment of solvation for molecular mechanics and dynamics”, Journal of the American Chemical Society, 112 (1990), 6127–6129 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ja00172a038'>10.1021/ja00172a038</ext-link>

[3] Onufriev A., Bashford D., Case D. A., “Modification of the Generalized Born Model Suitable for Macromolecules”, The Journal of Physical Chemistry B, 104 (2000), 3712–3720 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp994072s'>10.1021/jp994072s</ext-link>

[4] Chandler D., Andersen H. C., “Optimized Cluster Expansions for Classical Fluids. II: Theory of Molecular Liquids”, Journal of Chemical Physics, 57 (1972), 1930–1937 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1678513'>10.1063/1.1678513</ext-link>

[5] Kitao A., Hirata F., Go N., “Effects of solvent on the conformation and the collective motions of a protein. 3: Free energy analysis by the extended RISM theory”, The Journal of Physical Chemistry, 97 (1993), 10231–10235 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100141a053'>10.1021/j100141a053</ext-link>

[6] Tikhonov D. A., Polozov R. V., Timoshenko E. G., Kuznetsov Yu. A., Gorelov A. V., Dawson K. A., “Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation”, Journal of Chemical Physics, 109:4 (1998), 1528–1539 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.476704'>10.1063/1.476704</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1443170'>1443170</ext-link>

[7] Kinoshita M., Okamoto Y., Hirata F., “Solvent effects on conformational stability of peptides: RISM analyses”, Journal of Molecular Liquids, 90 (2001), 195–204 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0167-7322(01)00122-2'>10.1016/S0167-7322(01)00122-2</ext-link>

[8] Sobolev E. V., Tikhonov D. A., Fridman X., Truong T., “Primenenie metoda RISM dlya otsenki svobodnoi energii svyazyvaniya 4',6-diamidino-2-fenilindola v malom zhelobe DNK po molekulyarno-dinamicheskoi traektorii”, Matematicheskaya biologiya i bioinformatika, 5 (2010), 98–113 (data obrascheniya: 03.08.2012) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads/Sobolev2010(5_98).pdf'>http://www.matbio.org/downloads/Sobolev2010(5_98).pdf</ext-link>

[9] Tikhonov D. A., Sobolev E. V., “Otsenki energii Gibbsa gidratatsii po molekulyarno-dinamicheskim traektoriyam metodom integralnykh uravnenii teorii zhidkostei v priblizhenii RISM”, Zhurnal fizicheskoi khimii, 85 (2011), 732–738

[10] Tikhonov D. A., Sobolev E. V., “Usrednennyi po molekulyarnym traektoriyam metod integralnykh uravnenii v priblizhenii RISM”, Matematicheskaya biologiya i bioinformatika, 5 (2010), 188–201 (data obrascheniya: 03.08.2012) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads/Tikhonov2010(5_188).pdf'>http://www.matbio.org/downloads/Tikhonov2010(5_188).pdf</ext-link>

[11] Tikhonov D. A., Sobolev E. V., “Metod psevdosrednikh funktsii v teorii RISM. Temperaturnaya zavisimost gidratatsii peptida oksitotsina”, Matematicheskaya biologiya i bioinformatika, 5 (2010), 202–214 (data obrascheniya: 03.08.2012) <ext-link ext-link-type='uri' href='http://www.matbio.org/downloads/Tikhonov2010(5_202).pdf'>http://www.matbio.org/downloads/Tikhonov2010(5_202).pdf</ext-link>

[12] Kovalenko A., Hirata F., “Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method”, Journal of Chemical Physics, 113 (2000), 2793–2805 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1305885'>10.1063/1.1305885</ext-link>

[13] Danilkovich A. V., Tikhonov D. A., Sobolev E. V., Shadrina T. E., Udovichenko I. P., “K voprosu o vybore potentsialnykh polei dlya izucheniya molekulyarnoi dinamiki ionnykh peptidov i ikh dimerov”, Matematicheskaya biologiya i bioinformatika, 6 (2011), 53–62 (data obrascheniya: 03.08.2012) <ext-link ext-link-type='uri' href='http://www.matbio.org/2011/Danilkovich2011(6_53).pdf'>http://www.matbio.org/2011/Danilkovich2011(6_53).pdf</ext-link>

[14] Danilkovich A. V., Sobolev E. V., Tikhonov D. A., Udovichenko I. P., Lipkin V. M., “Distinctive $\mathrm{H-(RLDL)_4-OH}$ Peptide Complexes Potentiate Nanostructure Self-Assembling in Water”, Doklady Biochemistry and Biophysics, 443 (2012), 96–99 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S160767291202010X'>10.1134/S160767291202010X</ext-link>

[15] Zhang S., “Fabrication of novel biomaterials through molecular self-assembly”, Nature Biotechnology, 21 (2003), 1171–1178 <ext-link ext-link-type='doi' href='https://doi.org/10.1038/nbt874'>10.1038/nbt874</ext-link>

[16] Hsieh P. C. H., Davis M. E., Gannon J., MacGillivray C., Lee R. T., “Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers”, Journal of Clinical Investigations, 116 (2006), 237–248 <ext-link ext-link-type='doi' href='https://doi.org/10.1172/JCI25878'>10.1172/JCI25878</ext-link>

[17] Ellis-Behnke R. G., Liang Y.-X., You S.-W., Tay D. K. C., Zhang S., So K.-F., Schneider G. E., “Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision”, Proceedings of National Academy of Sciences of the USA, 103 (2006), 5054–5059 <ext-link ext-link-type='doi' href='https://doi.org/10.1073/pnas.0600559103'>10.1073/pnas.0600559103</ext-link>

[18] Hirata F., Rossky P. J., Pettitt B. M., “The interionic potential of mean force in a molecular polar solvent from an extended RISM equation”, Journal of Chemical Physics, 78 (1983), 4133–4144 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445090'>10.1063/1.445090</ext-link>

[19] Kovalenko A., Hirata F., “Self-consistent description of a metal-water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model”, Journal of Chemical Physics, 110 (1999), 10095–10112 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.478883'>10.1063/1.478883</ext-link>

[20] Lue L., Blankschtein D., “Liquid-State Theory of Hydrocarbon-Water Systems: Application to Methane, Ethane, and Propane”, The Journal of Physical Chemistry, 96 (1992), 8582–8594 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100200a069'>10.1021/j100200a069</ext-link>

[21] Singer S. J., Chandler D., “Free energy functions in the extended RISM approximation”, Molecular Physics, 55 (1985), 621–625 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268978500101591'>10.1080/00268978500101591</ext-link>

[22] Chandler D., Singh Y., Richardson D. M., “Excess electrons in simple fluids. I: General equilibrium theory for classical hard sphere solvents”, Journal of Chemical Physics, 81 (1984), 1975–1982 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.447820'>10.1063/1.447820</ext-link>

[23] Ten-no S., Iwata S., “On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein–Zernike equation”, Journal of Chemical Physics, 111 (1999), 4865–4868 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.479746'>10.1063/1.479746</ext-link>

[24] Ten-no S., “Free energy of solvation for the reference interaction site model: Critical comparison of expressions”, Journal of Chemical Physics, 115 (2001), 3724–3731 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1389851'>10.1063/1.1389851</ext-link>

[25] HyperChem$^{\circledR{}}$ Computational Chemistry. Practical Guide — Theory and Method, HC 70-00–04–00, Hypercube Inc., Gainesville, 2002, 350 pp.

[26] Macindoe G., Mavridis L., Venkatraman V., Devignes M.-D., Ritchie D. W., “HexServer: an FFT-based protein docking server powered by graphics processors”, Nucleic Acids Research, 38 (2010), 445–449 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkq311'>10.1093/nar/gkq311</ext-link>

[27] Tovchigrechko A., Vakser I. A., “Development and testing of an automated approach to protein docking”, Proteins, 60 (2005), 296–301 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/prot.20573'>10.1002/prot.20573</ext-link>

[28] Case D. A., Cheatham T. E. III., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J., “The Amber biomolecular simulation programs”, Journal of Computational Chemistry, 26 (2005), 1668–1688 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20290'>10.1002/jcc.20290</ext-link>

[29] Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., “Comparison of simple potential functions for simulating liquid water”, Journal of Chemical Physics, 79 (1983), 926–935 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.445869'>10.1063/1.445869</ext-link>

[30] Duan Y., Wu C., Chowdhury S., Lee M. C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P., “A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations”, Journal of Computational Chemistry, 24 (2003), 1999–2012 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.10349'>10.1002/jcc.10349</ext-link>