Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_a1, author = {Eduard S. Fomin and Nikolay A. Alemasov}, title = {L-MOLKERN: {a~Simulation} {Package} for {Polarizable} {Free-Energy} {Calculations}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {398--409}, publisher = {mathdoc}, volume = {7}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_a1/} }
TY - JOUR AU - Eduard S. Fomin AU - Nikolay A. Alemasov TI - L-MOLKERN: a~Simulation Package for Polarizable Free-Energy Calculations JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 398 EP - 409 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_a1/ LA - ru ID - MBB_2012_7_a1 ER -
Eduard S. Fomin; Nikolay A. Alemasov. L-MOLKERN: a~Simulation Package for Polarizable Free-Energy Calculations. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012), pp. 398-409. http://geodesic.mathdoc.fr/item/MBB_2012_7_a1/
[1] Berendsen H. J. C., “Incomplete equilibration: A source of error in free energy computations”, Proteins: Structure, Dynamics and Design, eds. Renugopalakrishnan V., Carey P. R., Smith I. C. P., Huang S. G., Storer A. C., ESCOM, Leiden, 1991, 384–392
[2] Chipot C., Pearlman D. A., “Free energy calculations: the long and winding gilded road”, Mol. Simulation, 28:1–2 (2002), 1–12 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/08927020211974'>10.1080/08927020211974</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1937521'>1937521</ext-link>
[3] Reddy M. R., Erion M. D., Free Energy Calculations in Rational Drug Design, Kluwer Academic, New York, 2001
[4] Raha K., Kenneth M., Merz J., “Calculation binding free energy in protein-ligand interaction”, Annu. Rep. Comp. Chem., 1 (2005), 113–130 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S1574-1400(05)01009-1'>10.1016/S1574-1400(05)01009-1</ext-link>
[5] Rodinger T., Romes R., “Engancing the accuracy, the efficiency and the scope of free energy simulations”, Curr. Opin. Struct. Biol., 15 (2005), 164–170 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.sbi.2005.03.001'>10.1016/j.sbi.2005.03.001</ext-link>
[6] Chipot C., Pohorille C., Free Energy Calculations, Theory and Application in Chemistry and Biology, 86, Springer, Berlin–Heidelberg, 2007
[7] Knight J. L., Brooks C. L. J., “$\lambda$-Dynamics free energy simulation methods”, Comput. Chem., 30:11 (2009), 1692–1700 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.21295'>10.1002/jcc.21295</ext-link>
[8] Beutler T. C., Mark A. E., van Schaik R. C., Gerber P. R., van Gunsteren W. F., “Avoiding singularities and numerical instabilities in free energy calculation based on molecular simulations”, Chem. Phys. Lett., 222 (1994), 529–539 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/0009-2614(94)00397-1'>10.1016/0009-2614(94)00397-1</ext-link>
[9] Zacharias M., Straatsma T. P., McCammon J. A., “Separation-shifted scaling, a new scaling method for Lennard–Jones interactions in thermodynamics integration”, J. Phys. Chem., 100:12 (1994), 9025–9031 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.466707'>10.1063/1.466707</ext-link>
[10] Okamoto Y., “Generalized-ensemble algorithms: Enhanced sampling techniques for Monte-Carlo and molecular dynamics simulations”, J. Mol. Graph. Model., 22 (2004), 425–439 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.jmgm.2003.12.009'>10.1016/j.jmgm.2003.12.009</ext-link>
[11] Woods C. J., Essex J. W., King M. A., “Enhanced configurational sampling in binding free energy calculations”, J. Chem. Phys. B, 107 (2003), 13711–13718 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/jp036162+'>10.1021/jp036162+</ext-link>
[12] Christ C., van Gunsteren W. F., “Enveloping Distribution Sampling: A method to calculate free energy differenced from a single simulation”, J. Chem. Phys., 126 (2007), 185110 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.2730508'>10.1063/1.2730508</ext-link>
[13] Hess B., Kutzner C., van der Spoel D., Lindahl E., “Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation”, J. Chem. Theory Comput., 4:3 (2008), 435–447 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/ct700301q'>10.1021/ct700301q</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=680685'>680685</ext-link>
[14] Case D. A., Cheatham T. E. III, Darden T., Gohlke H., Luo R., Merz K. M. Jr., Onufriev A., Simmerling C., Wang B., Woods R., “The Amber biomolecular simulation programs”, J. Comp. Chem., 26 (2005), 1668–1688 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20290'>10.1002/jcc.20290</ext-link>
[15] Phillipsa J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kale L., Schulten K., “Scalable molecular dynamics with NAMD”, J. Comp. Chem., 26 (2005), 1781–1802 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20289'>10.1002/jcc.20289</ext-link>
[16] Chirlian L. E., Francl M. M., “Atomic Charges Derived from Electrostatic Potentials: A Detailed Study”, J. Comp. Chem., 8 (1987), 894–903 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.540080616'>10.1002/jcc.540080616</ext-link>
[17] Cho A. E., Guallar V., Berne B. J., Friesner R. A., “Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach”, J. Comp. Chem., 26:9 (2005), 915–931 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20222'>10.1002/jcc.20222</ext-link>
[18] Sanderson R. T., “An Interpretation of Bond Lengths and a Classification of Bonds”, Science, 114:2973 (1951), 670–672 <ext-link ext-link-type='doi' href='https://doi.org/10.1126/science.114.2973.670'>10.1126/science.114.2973.670</ext-link>
[19] Fomin E. S., Alemasov N. A., Chirtsov A. S., Fomin A. E., “MOLKERN: A Library of Software Components for Molecular Modeling Programs”, Biophysics, 51:7 (2006), 110–113 (in Russian) <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S0006350906070219'>10.1134/S0006350906070219</ext-link>
[20] Ponder J. W., Case D. A., “Force Fields for Protein Simulations”, Protein Simulations, Advances in Protein Chemistry, 66, Elsevier, 2003, 27–85 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/S0065-3233(03)66002-X'>10.1016/S0065-3233(03)66002-X</ext-link>
[21] Yang Y. T., Xu C. X., “A compact limited memory method for large scale unconstrained optimization”, European Journal of Operational Research, 180:11 (2006), 48–56 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2293603'>2293603</ext-link>
[22] Gibson K. D., Scheraga H. A., “Surface area of the intersection of three spheres with unequal radii. A simplified analytical formula”, J. Mol. Phys., 64 (1988), 641–644 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268978800100453'>10.1080/00268978800100453</ext-link>
[23] Sigalov G., Fenley A., Onufriev A., “Analytical electrostatics for biomolecules: beyond the generalized Born approximation”, J. Chem Phys., 124:12 (2006), 124902 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.2177251'>10.1063/1.2177251</ext-link>
[24] Frenkel D., “Free energy computation and first-order phase transitions”, Molecular-dynamics simulation of statistical-mechanical systems, Proceedings of the 97$^{\mathrm{th}}$ international school of physics “Enrico Fermi”, 1986, 151–188
[25] Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, v. 1, Mir, M., 1967
[26] Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., Dinola A., Haak J. R., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81:8 (1984), 3684–3690 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.448118'>10.1063/1.448118</ext-link>
[27] Fomin E. S., “Consideration of Data Load Time on Modern Processors for the Verlet Table and Linked Cell Algorithms”, J. Comput. Chem., 32:7 (2011), 1386–1399 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.21722'>10.1002/jcc.21722</ext-link>
[28] Kirkwood J. G., “Statistical Mechanics of Fluid Mixtures”, J. Chem. Phys., 3:5 (1935), 300–313 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.1749657'>10.1063/1.1749657</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0012.04704'>0012.04704</ext-link>
[29] Fomin E. S., Vasenin A. E., “Net-q model ucheta perenosa zaryada i polyarizatsii v molekulyarnoi dinamike”, Vestnik NGU: Matematika, mekhanika i informatika, 2012 (to appear)
[30] Rappe A. K., Goddard W. A., “Charge equilibration for molecular dynamics simulations”, J. Phys. Chem., 95:8 (1991), 3358–3363 <ext-link ext-link-type='doi' href='https://doi.org/10.1021/j100161a070'>10.1021/j100161a070</ext-link>
[31] Andersen H. C., “Molecular dynamics at constant pressure and/or temperature”, J. Chem. Phys., 72 (1980), 2384–2393 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.439486'>10.1063/1.439486</ext-link>
[32] Chen J., Martinez T. J., “QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics”, Chem. Phys. Lett., 438:4–6 (2007), 315–320 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.cplett.2007.02.065'>10.1016/j.cplett.2007.02.065</ext-link>
[33] van Belle D., Lippens M. F. G., Wodak S. J., “Molecular Dynamics Simulation of Polarizable Water by an Extended Langrangian Method”, Mol. Phys., 77 (1992), 239–255 <ext-link ext-link-type='doi' href='https://doi.org/10.1080/00268979200102421'>10.1080/00268979200102421</ext-link>
[34] Halley J. W., Rustad J. R., Rahman A., “A Polarizable, Dissociating Molecular Dynamics Model for Liquid Water”, J. Chem. Phys., 98 (1993), 4110–4119 <ext-link ext-link-type='doi' href='https://doi.org/10.1063/1.465046'>10.1063/1.465046</ext-link>
[35] Rosen N., “Calculation of Interaction between Atoms with S-Electrons”, Phys. Rev., 38 (1931), 255–276 <ext-link ext-link-type='doi' href='https://doi.org/10.1103/PhysRev.38.255'>10.1103/PhysRev.38.255</ext-link>
[36] Martin C., Richard V., Salem M., Hartley R., Mauguen Y., “Refinement and structural analysis of barnase at 1.5Å resolution”, Acta Crystallographica Section D, 55:2 (1999), 386–398
[37] Kumar M. D., Bava K. A., Gromiha M. M., Prabakaran P., Kitajima K., Uedaira H., Sarai A., “\{ProTherm\} and \{ProNIT\}: thermodynamic databases for proteins and protein-nucleic acid interactions”, Nucleic Acids Res., 34 (2006), D204–D206 <ext-link ext-link-type='doi' href='https://doi.org/10.1093/nar/gkj103'>10.1093/nar/gkj103</ext-link>
[38] Seeliger D., de Groot B. L., “Protein Thermostability Calculations Using Alchemical Free Energy Simulations”, Biophysical Journal, 98:10 (2010), 2309–2316 <ext-link ext-link-type='doi' href='https://doi.org/10.1016/j.bpj.2010.01.051'>10.1016/j.bpj.2010.01.051</ext-link>
[39] Fomin E. S., Alemasov N. A., “Issledovanie termostabilnosti mutantnykh form belka barnazy na osnove programmnogo kompleksa MOLKERN”, Vavilovskii zhurnal genetiki i selektsii, 16:2 (2012), 415–426
[40] Gonnet P., “A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular dynamics simulations”, J. Comp. Chem., 28:2 (2007), 570–573 <ext-link ext-link-type='doi' href='https://doi.org/10.1002/jcc.20563'>10.1002/jcc.20563</ext-link>