Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_2_a8, author = {Andrey A. Zimin and Galina V. Mikoulinskaia and Lira F. Nigmatullina and Nafisa N. Nazipova}, title = {Comparative {Analysis} of {Individual} {Domains} of {Hoc} {Proteins} in {Subfamily} {\emph{Teequatrovirinae}} {Bacteriophages}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {611--631}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a8/} }
TY - JOUR AU - Andrey A. Zimin AU - Galina V. Mikoulinskaia AU - Lira F. Nigmatullina AU - Nafisa N. Nazipova TI - Comparative Analysis of Individual Domains of Hoc Proteins in Subfamily \emph{Teequatrovirinae} Bacteriophages JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 611 EP - 631 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a8/ LA - ru ID - MBB_2012_7_2_a8 ER -
%0 Journal Article %A Andrey A. Zimin %A Galina V. Mikoulinskaia %A Lira F. Nigmatullina %A Nafisa N. Nazipova %T Comparative Analysis of Individual Domains of Hoc Proteins in Subfamily \emph{Teequatrovirinae} Bacteriophages %J Matematičeskaâ biologiâ i bioinformatika %D 2012 %P 611-631 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a8/ %G ru %F MBB_2012_7_2_a8
Andrey A. Zimin; Galina V. Mikoulinskaia; Lira F. Nigmatullina; Nafisa N. Nazipova. Comparative Analysis of Individual Domains of Hoc Proteins in Subfamily \emph{Teequatrovirinae} Bacteriophages. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 2, pp. 611-631. http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a8/
[1] Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res., 25 (1997), 3389–3402 | DOI
[2] Basic Local Alignment Search Tool (data obrascheniya: 12.11.2012) http://blast.ncbi.nlm.nih.gov/Blast.cgi
[3] Balter M., “Virology. Evolution on life's fringes”, Science, 289 (2000), 1866–1867 | DOI
[4] Bateman A., Eddy S. R., Chothia C., “Members of the immunoglobulin superfamily in bacteria”, Protein Sci., 5:9 (1996), 1939–1941 | DOI | MR
[5] Bateman A., Eddy S. R., Mesyanzhinov V. V., “A member of the immunoglobulin superfamily in bacteriophage T4”, Virus Genes, 14 (1997), 163–165 | DOI
[6] Bork P., Holm L., Sander C., “The immunoglobulin fold. Structural classification, sequence patterns and common core”, J. Mol. Biol., 242 (1994), 309–320
[7] Dabrowska K., Zembala M., Boratynski J., Switala-Jelen K., Wietrzyk J., Opolski A., Szczaurska K., Kujawa M., Godlewska J., Gorski A., “Hoc protein regulates the biological effects of T4 phage in mammals”, Arch. Microbiol., 187:6 (2007), 489–498 | DOI
[8] De Bono B., Chothia C., “Exegesis: a procedure to improve gene predictions and its use to find immunoglobulin superfamily proteins in the human and mouse genomes”, Nucleic Acids Res., 31:21 (2003), 6096–6103 | DOI
[9] Fokine A., Islam M. Z., Zhang Z., Bowman V. D., Rao V. B., Rossmann M. G., “Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage”, J. Virol., 85:16 (2011), 8141–8148 | DOI
[10] Fokine A., Leiman P. G., Shneider M. M., Ahvazi B., Boeshans K. M., Steven A. C., Black L. W., Mesyanzhinov V. V., Rossmann M. G., “Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry”, Proc. Nat. Acad. Sci. USA, 102 (2005), 7163–7168 | DOI
[11] Fong S., Hamill S. J., Proctor M., Freund S. M., Benian G. M., Chothia C., Bycroft M., Clarke J., “Structure and stability of an immunoglobulin superfamily domain from twitchin, a muscle protein of the nematode Caenorhabditis elegans”, J. Mol. Biol., 264:3 (1996), 624–639 | DOI
[12] Halaby D. M., Poupon A., Mornon J., “The immunoglobulin fold family: sequence analysis and 3D structure comparisons”, Protein Eng., 12 (1999), 563–571 | DOI
[13] Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J., “Multiple sequence alignment with Clustal X”, Trends Biochem. Sci., 23 (1998), 403–405 | DOI
[14] Jing H., Takagi J., Liu J. H., Lindgren S., Zhang R. G., Joachimiak A., Wang J. H., Springer T. A., “Archaeal surface layer proteins contain beta propeller, PKD, and beta helix domains and are related to metazoan cell surface proteins”, Structure, 10 (2002), 1453–1464 | DOI
[15] ICTV Virus Taxonomy, 2011 Release (current), (data obrascheniya: 12.11.2012) http://ictvonline.org/virusTaxonomy.asp?version=2011
[16] Ishii T., Yamaguchi Y., Yanagida M., “Binding of the structural protein Soc to the head shell of bacteriophage T4”, J. Mol. Biol., 120 (1978), 533–544 | DOI
[17] Ishii T., Yanagida M., “Molecular organization of the shell of the T-even bacteriophage head”, J. Mol. Biol., 97 (1975), 655–660 | DOI
[18] Ishii T., Yanagida M., “The two dispensable structural proteins (Soc and Hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro”, J. Mol. Biol., 109 (1977), 487–514 | DOI
[19] Kadyrov F. A., Shlyapnikov M. G., Kryukov V. M., “A phage T4 site-specific endonuclease, SegE, is responsible for a non-reciprocal genetic exchange between T-even-related phages”, FEBS Lett., 415:1 (1997), 75–80 | DOI
[20] Lavigne R., Darius P., Summer E. J., Seto D., Mahadevan P., Nilsson A. S., Ackermann H. W., Kropinski A. M., “Classification of Myoviridae bacteriophages using protein sequence similarity”, BMC Microbiol., 9 (2009), 224 | DOI
[21] Lawrence J. G., Hatfull G. F., Hendrix R. W., “Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches”, J. Bacteriol., 184 (2002), 4891–4905 | DOI
[22] Rohwer F., Edwards R., “The phage proteomic tree: a genome-based taxonomy for phage”, J. Bacteriol., 184:16 (2002), 4529–4535 | DOI
[23] Ross P. D., Black L. W., Bisher M. E., Steven A. C., “Assembly-dependent conformational changes in a viral capsid protein. Calorimetric comparison of successive conformational states of the gp23 surface lattice of bacteriophage T4”, J. Mol. Biol., 183 (1985), 353–364 | DOI
[24] Sathaliyawala T., Islam M. Z., Li Q., Fokine A., Rossmann M. G., Rao V. B., “Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages”, Mol. Microbiol., 77:2 (2010), 444–455 | DOI
[25] Susskind M. M., Botstein D., “Molecular genetics of bacteriophage”, Microbiol. Rev., 42 (1978), 385–413
[26] Tamura K., Dudley J., Nei M., Kumar S., “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0”, Mol. Biol. Evol., 24 (2007), 1596–1599 | DOI
[27] Teichmann S. A., Chothia C., “Immunoglobulin superfamily proteins in Caenorhabditis elegans”, J. Mol. Biol., 296:5 (2000), 1367–1383 | DOI
[28] Vogel C., Teichmann S. A., Chothia C., “The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity”, Development, 130:25 (2003), 6317–6328 | DOI
[29] Yamaguchi Y., Yanagida M., “Head shell protein hoc alters the surface charge of bacteriophage T4. Composite slab gel electrophoresis of phage T4 and related particles”, J. Mol. Biol., 141 (1980), 175–193 | DOI