Setting Up the Nonlinear Model of Experimental Data From DNA Microarrays
Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 2, pp. 554-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear model for data on DNA expression is presented which uses the Langmuir function to describe the probes fluorescence intensities. The method is based on minimization of the loss function from Alpha-Beta Divergence family. To set up the model parameters the publicly available data of a few thousands microarrays were used. Numerical experiments are conducted to choose optimal values of model’s hyperparameters. It is shown that the model fits fluorescence intensities of the probes on microarrays better than the standard linear model and that the obtained expression estimates are more robust.
@article{MBB_2012_7_2_a19,
     author = {E. A. Riabenko},
     title = {Setting {Up} the {Nonlinear} {Model} of {Experimental} {Data} {From} {DNA} {Microarrays}},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {554--566},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a19/}
}
TY  - JOUR
AU  - E. A. Riabenko
TI  - Setting Up the Nonlinear Model of Experimental Data From DNA Microarrays
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2012
SP  - 554
EP  - 566
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a19/
LA  - ru
ID  - MBB_2012_7_2_a19
ER  - 
%0 Journal Article
%A E. A. Riabenko
%T Setting Up the Nonlinear Model of Experimental Data From DNA Microarrays
%J Matematičeskaâ biologiâ i bioinformatika
%D 2012
%P 554-566
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a19/
%G ru
%F MBB_2012_7_2_a19
E. A. Riabenko. Setting Up the Nonlinear Model of Experimental Data From DNA Microarrays. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 2, pp. 554-566. http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a19/

[1] Hubbell E., Liu W.-M., Mei R., “Robust estimators for expression analysis”, Bioinformatics, 18:12 (2002), 1585–1592 | DOI

[2] Li C., Wong W. H., “Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application”, Genome Biology, 2:8 (2001), RESEARCH0032 | MR

[3] Koltai H., Weingarten-Baror C., “Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction”, Nucleic acids research, 36:7 (2008), 2395–405 | DOI

[4] Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data”, Biostatistics, 4:2 (2003), 249–264 | DOI | Zbl

[5] Wu Z., Irizarry R. A., Gentleman R., Martinez-Murillo F., Spencer F., “A model-based background adjustment for oligonucleotide expression arrays”, Journal of the American Statistical Association, 99:468 (2004), 909–917 | DOI | MR | Zbl

[6] Li C., Wong W. H., “Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection”, Proceedings of the National Academy of Sciences of the United States of America, 98:1 (2001), 31–36 | DOI | MR | Zbl

[7] Affymetrix, Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. Technical note, (data obrascheniya: 02.09.2012) http://media.affymetrix.com/support/technical/technotes/plier_technote.pdf

[8] Katz S., Irizarry R. A., Lin X., Tripputi M., Porter M. W., “A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database”, BMC bioinformatics, 7 (2006), 464 | DOI

[9] McCall M. N., Bolstad B. M., Irizarry R. A., “Frozen robust multiarray analysis (fRMA)”, Biostatistics, 11:2 (2010), 242–253 | DOI

[10] McCall M. N., Irizarry R. A., “Thawing Frozen Robust Multi-array Analysis (fRMA)”, BMC Bioinformatics, 12:1 (2011), 369 | DOI

[11] The National Center for Biotechnology Information, Gene Expression Omnibus, (data obrascheniya: 02.09.2012) http://www.ncbi.nlm.nih.gov/geo/

[12] Halperin A., Buhot A., Zhulina E. B., “Sensitivity, specificity, and the hybridization isotherms of DNA chips”, Biophysical Journal, 86 (2004), 718–730 | DOI

[13] Abdueva D., Skvortsov D., Tavaré S., “Non-linear analysis of GeneChip arrays”, Nucleic acids research, 34:15 (2006), e105 | DOI

[14] Heim T., Wolterink J. K., Carlon E., Barkema G. T., “Effective affinities in microarray data”, Journal of Physics: Condensed Matter, 18 (2006), S525 | DOI

[15] Held G. A., Grinstein G., Tu Y., “Relationship between gene expression and observed intensities in DNA microarrays — a modeling study”, Nucleic acids research, 34:9 (2006), e70 | DOI

[16] Binder H., Preibisch S., Berger H., “Calibration of microarray gene-expression data”, Methods in Molecular Biology, 576:16 (2010), 375–407

[17] Krainer S., Microarray based real-time analysis of nucleic acid hybridization kinetics and thermodynamics, Dissertation, Dept. of Biology, Johannes Gutenberg-Universitat Mainz, 2011

[18] Davis S., Meltzer P. S., “GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor”, Bioinformatics, 14 (2007), 1846–1847 | DOI

[19] Huber W., Irizarry R. A., Gentleman R., Bioinformatics and Computational Biology Solutions Using R and Bioconductor, eds. Gentleman R., Carey V. J., Huber W., Irizarry R.A., Dudoit S., Springer Science Business Media, New York, 2005, 3–12 | DOI | MR | Zbl

[20] Affymetrix. Sample Data, Gene 1.0 ST Data Set., (data obrascheniya: 02.09.2012) http://www.affymetrix.com/support/technical/sample_data/gene_1_0_array_data.affx

[21] Cichocki A., Cruces S., Amari S., “Generalized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization”, Entropy, 13:1 (2011), 134–170 | DOI

[22] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1256 pp. | MR | Zbl