Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_2_a16, author = {Vladimir G. Red'ko}, title = {The {Model} of {Interaction} {Between} {Learning} and {Evolutionary} {Optimization}}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {676--691}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a16/} }
TY - JOUR AU - Vladimir G. Red'ko TI - The Model of Interaction Between Learning and Evolutionary Optimization JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 676 EP - 691 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a16/ LA - ru ID - MBB_2012_7_2_a16 ER -
Vladimir G. Red'ko. The Model of Interaction Between Learning and Evolutionary Optimization. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 2, pp. 676-691. http://geodesic.mathdoc.fr/item/MBB_2012_7_2_a16/
[1] Baldwin J. M., “A new factor in evolution”, American Naturalist, 30 (1896), 441–451 | DOI
[2] Morgan C. L., “On modification and variation”, Science, 4 (1896), 733–740 | DOI
[3] Osborn H. F., “Ontogenetic and phylogenetic variation”, Science, 4 (1896), 786–789 | DOI
[4] Waddington C. H., “Canalization of development and inheritance of acquired characters”, Nature, 150 (1942), 563–565 | DOI
[5] Belew R. K., Mitchell M. (eds.), Adaptive Individuals in Evolving Populations: Models and Algorithms, Addison-Wesley, Massachusetts, 1996
[6] Turney P., Whitley D., Anderson R. (eds.), “Evolution, Learning, and Instinct: 100 Years of the Baldwin Effect”, Special Issue of Evolutionary Computation on the Baldwin Effect, 4:3 (1996)
[7] Hinton G. E., Nowlan S. J., “How learning can guide evolution”, Complex Systems, 1 (1987), 495–502 | Zbl
[8] Mayley G., “Guiding or hiding: Explorations into the effects of learning on the rate of evolution”, ECAL 97, Proceedings of the Fourth European Conference on Artificial Life, eds. Husbands P., Harvey I., MIT Press, Cambridge, Massachusetts, 1997, 135–144
[9] Ackley D., Littman M., “Interactions between learning and evolution”, Artificial Life II, Proceedings of the Second Artificial Life Workshop, eds. Langton C. G., Taylor C., Farmer J. D., Rasmussen S., Addison-Wesley, Redwood City CA, 1992, 487–509
[10] Red'ko V. G., Mosalov O. P., Prokhorov D. V., “A model of evolution and learning”, Neural Networks, 18:5–6 (2005), 738–745 | DOI
[11] Redko V. G., Redko O. V., “Bionicheskaya model geneticheskoi assimilyatsii priobretaemykh navykov”, Nauchnaya sessiya NIYaU MIFI-2010. XII Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Neiroinformatika-2010», Sbornik nauchnykh trudov, V 2-kh chastyakh, v. 1, NIYaU MIFI, M., 2010, 191–198
[12] Eigen M., Samoorganizatsiya materii i evolyutsiya biologicheskikh makromolekul, Mir, M., 1973
[13] Eigen M., Shuster P., Gipertsikl. Printsipy samoorganizatsii makromolekul, Mir, M., 1982
[14] Redko V. G., Evolyutsiya, neironnye seti, intellekt. Modeli i kontseptsii evolyutsionnoi kibernetiki, URSS, M., 2005
[15] Redko V. G., Tsoi Yu. R., “Otsenka effektivnosti evolyutsionnykh algoritmov”, Doklady AN, 404:3 (2005), 312–315 | MR
[16] Kimura M., Molekulyarnaya evolyutsiya: teoriya neitralnosti, Mir, M., 1985
[17] Redko V. G., Tsoi Yu. R., “Otsenka skorosti i effektivnosti evolyutsionnykh algoritmov”, Bionicheskie informatsionnye sistemy i ikh prakticheskie primeneniya, eds. Zinchenko L. A., Kureichika V. M., Redko V. G., Fizmatlit, M., 2011, 109–126
[18] Redko V. G., “Spinovye stekla i evolyutsiya”, Biofizika, 35:5 (1990), 831–834