Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_1_a24, author = {K. A. Podgornyi}, title = {Investigation of the properties of spatially homogeneous mathematical model of the four-component plankton system}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {299--321}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a24/} }
TY - JOUR AU - K. A. Podgornyi TI - Investigation of the properties of spatially homogeneous mathematical model of the four-component plankton system JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 299 EP - 321 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a24/ LA - ru ID - MBB_2012_7_1_a24 ER -
%0 Journal Article %A K. A. Podgornyi %T Investigation of the properties of spatially homogeneous mathematical model of the four-component plankton system %J Matematičeskaâ biologiâ i bioinformatika %D 2012 %P 299-321 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a24/ %G ru %F MBB_2012_7_1_a24
K. A. Podgornyi. Investigation of the properties of spatially homogeneous mathematical model of the four-component plankton system. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 1, pp. 299-321. http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a24/
[1] Ilichev V.G., “Struktura obratnykh svyazei s zapazdyvaniem i ustoichivost ekologicheskikh sistem”, Zhurn. obsch. biologii, 70:4 (2009), 341–348
[2] Edwards A.M., “Adding detritus to a nutrient–phytoplankton–zooplankton model: a dynamical-systems approach”, J. Plankton Res., 23 (2001), 389–413 | DOI
[3] Popova E.E., Fasham M.J.R., Osipov A.V., Ryabchenko V.A., “Chaotic behaviour of an ocean ecosystem model under seasonal external forcing”, J. Plankton Res., 19 (1997), 1495–1515 | DOI
[4] Ryabchenko V.A., Fasham M.J.R., Kagan B.A., Popova E.E., “What causes short-term oscillations in ecosystem models of the ocean mixed layer?”, J. Mar. Syst., 13 (1997), 33–50 | DOI
[5] Dolgonosov B.M., Nelineinaya dinamika ekologicheskikh i gidrologicheskikh protsessov, Predislovie G. G. Malinetskogo, ed. M.G. Khublaryan, Knizhnyi dom «LIBROKOM», M., 2009, 440 pp.
[6] Dolgonosov B.M., Gubernatorova T.N., “Nelineinaya model transformatsii primesei v vodnoi srede”, Vodnye resursy, 20:3 (2005), 202–336
[7] Chattopadhayay J., Sarkar R.R., Mandal S., “Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling”, J. Theor. Biol., 215 (2002), 333–344 | DOI
[8] Edwards A.M., Bees M.A., “Generic dynamics of a simple plankton population model with a non-integer exponent of closure”, Chaos, Solitons and Fractals, 12 (2001), 289–300 | DOI | Zbl
[9] Edwards A.M., Brindley J., “Oscillatory behaviour in a three-component plankton population model”, Dyn. Stab. Syst., 11 (1996), 347–370 | DOI | Zbl
[10] Edwards A.M., Brindley J., “Zooplankton mortality and the dynamical behaviour of plankton population models”, Bull. Math. Biol., 61 (1999), 303–339 | DOI
[11] Morozov A.D., Dragunov T.N., Vizualizatsiya i analiz invariantnykh mnozhestv dinamicheskikh sistem, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 304 pp.