Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling
Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 1, pp. 81-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Technique of data receiving, which is able for determination of the gas flux from the soil by inverse modeling, was suggested. Evaluation of methane flux, using this method, was carried out in a middle taiga oligotrophic wetland. Flux values, determined by suggested technique (1.5–3 mgС–СН$_4$ m$^2$h$^{-1}$), are equal to flux values, determined by static chamber technique in the same wetland. Flux footprint also was determined. It was varied from a few hundred meters (under unstable meteorological conditions) to several thousand meters (under strongly stable meteorological conditions). Suggested technique allows to identify the difference of flux values between two series of measurements, even we takes into account errors of the method and errors, caused by footprint changing during diurnal observations. Dynamic of such factors of methane emission, as water table level and temperature of the soil surface layer can be a cause of this difference.
@article{MBB_2012_7_1_a13,
     author = {M. V. Glagolev and A. F. Sabrekov},
     title = {Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling},
     journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika},
     pages = {81--101},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a13/}
}
TY  - JOUR
AU  - M. V. Glagolev
AU  - A. F. Sabrekov
TI  - Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling
JO  - Matematičeskaâ biologiâ i bioinformatika
PY  - 2012
SP  - 81
EP  - 101
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a13/
LA  - ru
ID  - MBB_2012_7_1_a13
ER  - 
%0 Journal Article
%A M. V. Glagolev
%A A. F. Sabrekov
%T Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling
%J Matematičeskaâ biologiâ i bioinformatika
%D 2012
%P 81-101
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a13/
%G ru
%F MBB_2012_7_1_a13
M. V. Glagolev; A. F. Sabrekov. Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 1, pp. 81-101. http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a13/

[1] Karelin D.V., Zamolodchikov D.G., Uglerodnyi obmen v kriogennykh ekosistemakh, Nauka, M., 2008, 344 pp.

[2] Borodulin A.I., Desyatkov B.D., Makhov G.A., Sarmanaev S.R., “Opredelenie emissii bolotnogo metana po izmerennym znacheniyam ego kontsentratsii v prizemnom sloe atmosfery”, Meteorologiya i gidrologiya, 1997, no. 1, 66–74

[3] Mikaloff Fletcher S.E., Tans P.P., Bruhwiler L., Miller J.B., Heimann M., “CH$_4$ sources estimated from atmospheric observations of CH$_4$ and its $^{13}$C/$^{12}$C isotopic ratios: 1. Inverse modeling of source processes”, Global Biogeochem. Cycles, 18, GB4004 | DOI

[4] IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis, eds. Houghton J.T, Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A., Cambridge Univ. Press, New York, 2001

[5] Fiore A.M., Jacob D.J., Field B.D., Streets D.G., Fernandes S.D., Jang C., “Linking ozone pollution and climate change: The case for controlling methane”, Geophys. Res. Lett., 29:19 (2002), 1919 ; doi: {10.1029/2002GL015601} http://dx.doi.org/10.1029/2002GL015601 | DOI

[6] Jones R.L., Pyle J.A., “Observations of CH$_4$ and N$_2$O by the Nimbus 7 SAMS: A comparison with in situ data and two-dimensional numerical model calculations”, J. Geophys. Res., 1984, no. 89, 5263–5279 | DOI

[7] Zavarzin G.A., Lektsii po prirodovedcheskoi mikrobiologii, Nauka, M., 2004, 367 pp.

[8] Denman K.L., “Climate change 2007: the physical science basis”, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chapter 7, ed. Solomon D., White S. and Cameron A., Cambridge University Press, Cambridge, 2007, 499–588

[9] Lundegardh H., “Carbon Dioxide Evolution of Soil and Crop Growth”, Soil Science, 23:6 (1927), 417–453 | DOI

[10] Makarov B.N., “Dinamika gazoobmena mezhdu pochvoi i atmosferoi v techenie vegetatsionnogo perioda pod razlichnymi kulturami sevooborota”, Pochvovedenie, 1952, no. 3, 271–277 | Zbl

[11] Maksyutov S., Inoue G., Sorokin M., Nakano T., Krasnov O., Kosykh N., Mironycheva-Tokareva N., Vasiliev S., “Methane fluxes from wetland in west Siberia during April–October 1998”, Proceedings of the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1998, Isebu, Tsukuba, 1999, 115–124

[12] Graf A., Weihermuller L., Huisman J.A., Herbst M., Bauer J., Vereecken H., “Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies”, Biogeosciences, 5:4 (2008), 1175–1188 ; URL: (дата обращения: 29.12.2010) http://www.biogeosciences.net/5/1175/2008/bg-5-1175-2008.pdf | DOI

[13] Pape L., Ammann C., Nyfeler-Brunner A., Spirig C., Hens K., Meixner F.X., “An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems”, Biogeosciences, 6:3 (2009), 405–429 ; URL: (дата обращения: 29.12.2010) http://www.biogeosciences.net/6/405/2009/bg-6-405-2009.pdf | DOI

[14] Glagolev M.V., Golovatskaya E.A., Shnyrev N.A., “Emissiya parnikovykh gazov na territorii Zapadnoi Sibiri”, Sibirskii ekologicheskii zhurnal, 14:2 (2007), 197–210

[15] Glagolev M.V., Shnyrev N.A., “Dinamika letne-osennei emissii SN$_4$ estestvennymi bolotami (na primere yuga Tomskoi oblasti)”, Vestnik MGU. Ser. Pochvovedenie, 2007, no. 1, 8–15 | MR

[16] Glagolev M.V., “Matematicheskoe modelirovanie metanokisleniya v pochve”, Trudy Instituta mikrobiologii imeni S. N. Vinogradskogo RAN, XIII, K 100-letiyu otkrytiya metanotrofii, ed. V. F. Galchenko, Nauka, M., 2006, 315–341

[17] Healy R.W., Striegl R.G., Ressell T.F., Hutchinson G.L., Livingston G.P., “Numerical evalution of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes”, Soil Science of America Journal, 60 (1996), 740–747 | DOI

[18] Krasnov O., Maksyutov S., Shimoyama K., Suto H., Nadeev A., Shelevoi V., Glagolev M., Kosykh N., Machida T., Inoue G., “Automatic chamber observations of methane and carbon dioxide fluxes at West Siberian wetland”, American Geophysical Union (Fall Meeting 2010) 2010, Abstract #GC33A–0921

[19] Moore T.R., Dalva M., “The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils”, Journal of Soil Science, 44 (1993), 651–664 | DOI

[20] Chanton J.P., Whiting G.J.,Happel J.D., Gerard G., “Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes”, Aquatic Botany, 46 (1993), 111–128 | DOI

[21] Morrissey L.A., Zobel D.B., Livingston G.P., “Significance of stomatal control on methane release from Carex-dominated wetlands”, Chemosphere, 26:1–4 (1993), 339–355 | DOI

[22] Glagolev M., Uchiyama H., Lebedev V., Utsumi M., Smagin A., Glagoleva O., Erohin V., Olenev P., Nozhevnikova A., “Oxidation and Plant-Mediated Transport of Methane in West Siberian Bog”, Proceedings of the Eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999, Isebu, Tsukuba, 2000, 143–149

[23] Sebacher D.I., Harriss R.C., Bartlett K.B., “Methane flux across the air-water interface: air velocity effects”, Tellus, 35B (1983), 103–109 | DOI

[24] Holmes M.E., Sansone F.J., Rust T.M., Popp B.N., “Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon isotopic ratios”, Global Biogeochemical Cycles, 14:1 (2000), 1–10 | DOI

[25] Kelley C.A., Jeffrey W.H., “Dissolved methane concentration profiles and air-sea fluxes from 41$^\circ$S to 27$^\circ$N”, Global Biogeochemical Cycles, 16:3 (2002), 1040 ; doi: 10.1029/2001GB001809 | DOI | MR

[26] Mori S., Prokushkin P., Oksana M., Kajimoto T., Zyryanova O., Abaimov A.P., Koike T., Matsuura Y., Ueda R., “Daytime Whole-Tree Respiration under Controlled Air Temperature Utilizing Heat of Permafrost and Wood Fire in a Siberian Larch Forest”, Proceedings of the Sixth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1997, Isebu, Tsukuba, 1998, 11–17

[27] Pelletier L., Moore T.R., Roulet N.T., Garneau M., Beaulieu-Audy V., “Methane fluxes from three peatlands in the La Grande Riviere watershed, James Bay lowland, Canada”, Journal of Geophysical Research, 112 (2007), G01018 ; doi: 10.1029/2006JG000216 | DOI

[28] Chen H., Wu N., Gao Y., Wang Y., Luo P., Tian J., “Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China”, Science of the total environment, 407 (2009), 1097–1104 | DOI

[29] Baldocchi D.D., Hicks B.B., Meyers T.P., “Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods”, Ecology, 69 (1988), 1331–1340 | DOI

[30] Inoue G., Makshyutov S., “Application of Conditional Sampling Eddy Flux Measurement in West Siberia Lowland”, Proceedings of the Second Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1993, Isebu, Tsukuba, 1994, 83–85

[31] Setton O.G., Mikrometeorologiya, Gidrometeoizdat, L., 1958, 9 pp.

[32] Glagolev M.V., “K metodu «obratnoi zadachi» dlya opredeleniya poverkhnostnoi plotnosti potoka gaza iz pochvy”, Dinamika okruzhayuschii sredy i globalnye izmeneniya klimata, 1:1 (2010), 17–36 ; URL: (дата обращения: 30.07.2010) http://www.ugrasu.ru/international/unesco/journal/content/2010_1/documents/Glagolev.pdf | MR

[33] Topp E., Pattey E., “Soils as sources and sinks for atmospheric methane”, Canadian Journal of Soil Science, 77 (1997), 167–178 | DOI

[34] Bek Dzh., Blakuell B., Sent-Kler Ch., ml., Nekorrektnye obratnye zadachi teploprovodnosti, Mir, M., 1989, 312 pp.

[35] Amosov A.A., Dubinskii Yu.A., Kopchenova N.V., Vychislitelnye metody dlya inzhenerov, Vysshaya shkola, M., 1994, 544 pp.

[36] Schmidt H.P., “Footprint modeling for vegetation atmosphere exchange studies: a review and perspective”, Agricultural and Forest Meteorology, 113 (2002), 159–183 | DOI

[37] Soegaard H., Nordstroem C., Friborg T, Hansen B.U., Christensen T.R., Bay C., “Trace gas exchange in a high-arctic valley. 3. Integrating and scaling CO$_2$ fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing”, Global Biogeochem. Cycles, 14:3 (2000), 725–744 | DOI

[38] Fan S.M., Wofsy S.C., Bakwin P.S., Jacob D.J., Anderson S.M., Kebabian P.L., McManus J.B., Kolb C.E., “Micrometeorological Measurements of CH$_4$ and CO$_2$ Exchange Between the Atmosphere and Subarctic Tundra”, Journal of Geophysical Research, 97:D15 (1992), 16627–16643 | DOI

[39] Simpson I.J., Edwards G.C., Thhurtell G.W., den Hartog G., Neumann H.H., Staebler R.M., “Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest”, Journal of Geophysical Research, 102:D24 (1997), 29331–29341 | DOI

[40] Beswick K.M., Simpson T.W., Fowler D., Choularton T.W., Gallagher M.W., Hargreaves K.J., Sutton M.A., Kaye A., “Methane emissions on large scales”, Atmospheric Environment, 32:19 (1998), 3283–3291 | DOI

[41] Kormann R., Meixner F.X., “An analytical footprint model for non-neutral stratification”, Boundary-Layer Meteorology, 99 (2001), 207–224 | DOI

[42] Kleptsova I.E., Glagolev M.V., Filippov I.V., Maksyutov Sh.Sh., “Emissiya metana iz ryamov i gryad srednei taigi Zapadnoi Sibiri”, Dinamika okruzhayuschei sredy i globalnye izmeneniya klimata, 2010, no. 1, 66–76; URL: (дата обращения: 30.07.2010) http://www.ugrasu.ru/international/unesco/journal/content/2010_1/documents/Klepzova.pdf

[43] Bleuten W., Filippov I., Dinamika okruzhayuschii sredy i globalnye izmeneniya klimata. Sbornik nauchnykh trudov kafedry YuNESKO Yugorskogo gosudarstvennogo universiteta, 1, ed. Glagolev M.V., Lapshina E.D., Novosibirskii gos. un-t, Novosibirsk:, 2008, 208–224; URL: (дата обращения: 20.06.2011) http://www.ugrasu.ru/international/unesco/publications/journal/documents/Sbornic.pdf

[44] Hutchinson G.L., Mosier A.R., “Improved soil cover method for field measurement of nitrous-oxide fluxes”, Soil Sci. Soc. Am. J., 45 (1981), 311–316 | DOI

[45] Glagolev M.V., Chistotin M.V., Shnyrev N.A., Sirin A.A., “Letne-osennyaya emissiya dioksida ugleroda i metana osushennymi torfyanikami, izmenennymi pri khozyaistvennom ispolzovanii, i estestvennymi bolotami (na primere uchastka Tomskoi oblasti)”, Agrokhimiya, 2008, no. 5, 46–58 | MR

[46] Berlyand M.E., Prognoz i regulirovanie zagryazneniya atmosfery, Gidrometeoizdat, L., 1985, 290 pp.

[47] Fizicheskie velichiny, Spravochnik, eds. Grigorev I.S. i Meilikhov E.Z., Energoatomizdat, M., 1991, 1232 pp.

[48] Glagolev M.V., Sabrekov A.F., Kazantsev V.S., Fizikokhimiya i biologiya torfa. Metody izmereniya gazoobmena na granitse pochva-atmosfera, TGPU, Tomsk, 2010, 104 pp.

[49] Zilitinkevich S., Esau I., “Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layers”, Boundary-Layer Meteorology, 125 (2007), 193–205 | DOI

[50] Zilitinkevich S.S., Esau I., Kleeorin N., Rogachevskii I., Kouznetsov R.D., “On the Velocity Gradient in Stably Stratified Sheared Flows. Part 1: Asymptotic Analysis and Applications”, Boundary-Layer Meteorology, 135 (2010), 505–511 ; doi: 10.1007/s10546-010-9488-x | DOI | Zbl

[51] Ebert K., Ederer Kh., Kompyutery. Primenenie v khimii, Mir, M., 1988, 416 pp.

[52] Treat C.C., Bubier J.L., Varner R.K., Crill P.M., “Timescale dependence of environmental and plant-mediated controls on SN$_4$ flux in a temperate fen”, Journal of Geophysical Research, 112 (2007), G01014 ; doi: {10.1029/2006JG000210} http://dx.doi.org/10.1029/2006JG000210 | DOI

[53] Skeel R.D. and Berzins M., “A Method for the Spatial Discretization of Parabolic Equations in One Space Variable”, SIAM Journal on Scientific and Statistical Computing, 1 (1990), 1–32 | DOI | MR | Zbl

[54] Khimmelblau D., Analiz protsessov statisticheskimi metodami, Mir, M., 1973, 957 pp.

[55] Rumshiskii L.Z., Matematicheskaya obrabotka rezultatov eksperimenta, Nauka, M., 1971, 192 pp.

[56] Sabrekov A.F., “O svyazi sutochnoi dinamiki kontsentratsii metana nad bolotom s koeffitsientom diffuzii”, Dinamika okruzhayuschei sredy i globalnye izmeneniya klimata, 1:2 (2010)

[57] Atmosfera, ed. Sedunov Yu.S., Gidrometeoizdat, L., 1991

[58] Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T., “Methane emission from middle taiga oligotrophic hollows of Western Siberia”, Vestnik TGPU, 2011, no. 5, 135–143; URL: (дата обращения: 19.07.2011) http://vestnik.tspu.ru/files/PDF/articles/sabrekov_a._f._135_143_5_107_2011.pdf | Zbl

[59] Glagolev M., Inisheva L., Lebedev V., Naumov A., Dement’eva T., Golovatskaja E., Erohin V., Shnyrev N., Nozhevnikova A., “The Emission of CO$_2$ and CH$_4$ in Geochemically Similar Oligotrophic Landscapes of West Siberia”, Proceedings of the Ninth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 2000, Kohsoku Printing Center, Sapporo, 2001, 112–119

[60] Glagolev M.V., “Temperaturnyi gisterezis potoka metana iz pochvy”, «Biologiya — nauka XXI veka»: 6-ya Puschinskaya shkola-konferentsiya molodykh uchënykh, v. 3, Izd-vo gos. ped. un-ta im. L. N. Tolstogo, Tula, 2002, 97–98

[61] Horst T.W., Weil J.C., “How far is far enough — the fetch requirements for micrometeorological measurement of surface fluxes”, J. Atmos. Oceanic Technol., 11 (1994), 1018–1025 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI