Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2012_7_1_a1, author = {V. D. Tsukerman and Z. S. Eremenko and O. V. Karimova and A. A. Sazykin and S. V. Kulakov}, title = {Mathematical model of spatial encoding in hippocampal formation. {I.~Grid} cells neurodynamics}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {206--243}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a1/} }
TY - JOUR AU - V. D. Tsukerman AU - Z. S. Eremenko AU - O. V. Karimova AU - A. A. Sazykin AU - S. V. Kulakov TI - Mathematical model of spatial encoding in hippocampal formation. I.~Grid cells neurodynamics JO - Matematičeskaâ biologiâ i bioinformatika PY - 2012 SP - 206 EP - 243 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a1/ LA - ru ID - MBB_2012_7_1_a1 ER -
%0 Journal Article %A V. D. Tsukerman %A Z. S. Eremenko %A O. V. Karimova %A A. A. Sazykin %A S. V. Kulakov %T Mathematical model of spatial encoding in hippocampal formation. I.~Grid cells neurodynamics %J Matematičeskaâ biologiâ i bioinformatika %D 2012 %P 206-243 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a1/ %G ru %F MBB_2012_7_1_a1
V. D. Tsukerman; Z. S. Eremenko; O. V. Karimova; A. A. Sazykin; S. V. Kulakov. Mathematical model of spatial encoding in hippocampal formation. I.~Grid cells neurodynamics. Matematičeskaâ biologiâ i bioinformatika, Tome 7 (2012) no. 1, pp. 206-243. http://geodesic.mathdoc.fr/item/MBB_2012_7_1_a1/
[1] Tsukerman V.D., Cheshkov G.N., “Osnovy nelineinoi dinamiki sensornogo vospriyatiya. I. Fazovoe kodirovanie v ostsillyatornykh setyakh s chetnym tsiklicheskim tormozheniem”, Neirokompyutery: razrabotka, primenenie, 2002, no. 7–8, 65–72
[2] Tsukerman V.D., Kulakov S.V., “Biologicheskie algoritmy kodirovaniya sensornykh sobytii”, Neirokompyutery: razrabotka, primenenie, 2004, no. 11, 15–25
[3] Tsukerman V.D., Nelineinaya dinamika sensornogo vospriyatiya, ili Chto i kak kodiruet mozg, Izd-vo Rostovskogo gosuniversiteta, Rostov-na-Donu, 2005, 195 pp.
[4] Tsukerman V.D., “Matematicheskaya model fazovogo kodirovaniya sobytii v mozge”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 97–107 ; URL: (дата обращения 29.01.2012) http://www.matbio.org/downloads/Tsukerman2006(1_97).pdf | MR
[5] Tsukerman V.D., Kulakov S.V., Karimova O.V., “Pulsiruyuschie kody sobytiinykh posledovatelnostei”, Matematicheskaya biologiya i bioinformatika, 1:1 (2006), 108–122 ; URL: (дата обращения 29.01.2012) http://www.matbio.org/downloads/Tsukerman2006(1_108).pdf
[6] Tsukerman V.D., Karimova O.V., Kulakov S.V., Sazykin A.A., “Sovremennye neirobiologicheskie dannye i novoe v neirodinamike navigatsionnogo povedeniya”, Neirokompyutery: razrabotka, primenenie, 2010, no. 2, 17–27
[7] Tsukerman V.D., “Neirodinamicheskie osnovy navigatsionnogo povedeniya”, Nelineinye volny–2010, eds. Gaponov-Grekhov A.V., Nekorkin V.I., IPF RAN, Nizhnii Novgorod, 2011, 396–411
[8] Lengyel M., Kwag J., Paulsen O., Dayan P., “Matching storage and recall: hippocampal spike timing dependent plasticity and phase response curves”, Nat. Neuroscience, 8 (2005), 1677–1683 | DOI
[9] Lisman J., “The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme”, Hippocampus, 15 (2005), 913–922 | DOI
[10] Jacobs J., Kahana M.J., Ekstrom A.D., Fried I., “Brain oscillations control timing of single-neuron activity in humans”, J. Neuroscience, 27 (2007), 3839–3844 | DOI
[11] Lisman J., Buzsaki G., “A neural coding scheme formed by the combined function of gamma and theta oscillations”, Schizophr. Bull., 34 (2008), 974–980 | DOI
[12] Panzeri S., Brunel N., Logothetis N.K., Kayser C., “Sensory neural codes using multiplexed temporal scales”, Trends Neurosci., 33 (2010), 111–120 | DOI
[13] Wulff P., Ponomarenko A.A., Bartosa M., Korotkova T.M., Fuchs E.C., Bahner F., Both M., Tort A.B.L., Kopell N.J., Wisden W., Monyer H., “Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbuminpositive interneurons”, PNAS USA, 106 (2009), 3561–3566 | DOI
[14] McLelland D., Paulsen O., “Neuronal oscillations and the rate-to-phase transform: mechanism, model and mutual information”, J. Physiol., 587:4 (2009), 769–785 | DOI
[15] Harvey C.D., Collman F., Dombeck D.A., Tank D.W., “Intracellular dynamics of hippocampal place cells during virtual navigation”, Nature, 461 (2009), 941–946 | DOI
[16] Nadasdy Z., “Binding by asynchrony: the neuronal phase code”, Frontiers in Neuroscience, 4 (2010), 1–11 | DOI
[17] Schyns P.G., Thut G., Gross J., “Cracking the code of oscillatory activity”, PLoS Biology, 9 (2011), 1–8 | DOI
[18] Vinogradova O.S., Gippokamp i pamyat, Nauka, M., 1975, 239 pp.
[19] O'Keefe J., Burgess N., “Geometric determinants of the place fields of hippocampal neurons”, Nature, 381 (1996), 425–428 | DOI
[20] O’Keefe J., Burgess N., “Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells”, Hippocampus, 15 (2005), 853–866 | DOI
[21] Taube J.S., Muller R.U., Ranck J.B.Jr., “Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis”, J. Neurosci., 10 (1990), 420–435
[22] Taube J.S., Muller R.U., Ranck Jr.J.B., “Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations”, J. Neurosci., 10 (1990), 436–447
[23] Knierim J.J., Kudrimoti H.S., McNaughton B.L., “Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells”, J. Neurophysiol., 80 (1998), 425–446
[24] Sargolini F., Fyhn M., Hafting T., McNaughton B.L., Witter M.P., Moser M.B., Moser E.I., “Conjunctive representation of position, direction, and velocity in entorhinal cortex”, Science, 312 (2006), 758–762 | DOI
[25] Wiener S.I., Berthoz A., Zugaro M.B., “Multisensory processing in the elaboration of place and head direction responses by limbic system neurons”, Brain Res. Cogn. Brain Res., 14 (2002), 75–90 | DOI
[26] Zugaro M.B., Arleo A., Berthoz A., Wiener S.I., “Rapid spatial reorientation and head direction cells”, J. Neurosci., 23 (2003), 3478–3482
[27] Cressant A., Muller R.U., Poucet B., “Failure of centrally placed objects to control the firing fields of hippocampal place cells”, J. Neurosci., 17 (1997), 2531–2542
[28] Zugaro M.B., Berthoz A., Wiener S.I., “Background but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons”, J. Neurosci., 21:14 (2001), RC154
[29] Zugaro M.B., Arleo A., Dejean C., Burguieve E., Khamassi M., Wiener S.I., “Rat anterodorsal thalamic head direction neurons depend upon dynamic visual signals to select anchoring landmark cues”, Eur. J. Neurosci., 20 (2004), 530–536 | DOI
[30] Jeffery K.J., “Learning of landmark stability and instability by hippocampal place cells”, Neuropharmacol., 37 (1998), 677–687 | DOI
[31] Knierim J.J., Kudrimoti H.S., McNaughton B.L., “Place cells, head direction cells, and the learning of landmark stability”, J. Neurosci., 15 (1995), 1648–1659
[32] Markus E.J., Barnes C.A., McNaughton B.L., Gladden V.L., Skaggs W.E., “Spatial information content and reliability of hippocampal CA1 neurons: Effects of visual input”, Hippocampus, 4 (1994), 410–421 | DOI
[33] Quirk G.J., Muller R.U., Kubie J.L., “The firing of hippocampal place cells in the dark depends on the rat’s recent experience”, J. Neurosci., 10 (1990), 2008–2017
[34] Wiener S.I., Arleo A., “Persistent activity in limbic system neurons: Neurophysiological and modeling perspectives”, J. Physiol. (Paris), 97 (2003), 547–555 | DOI
[35] Hafting T., Fyhn M., Molden S., Moser M.B., Moser E.I., “Microstructure of a spatial map in the entorhinal cortex”, Nature, 436 (2005), 801–806 | DOI
[36] Barry C., Hayman R., Burgess N., Jeffery K.J., “Experience-dependent rescaling of entorhinal grids”, Nat. Neurosci., 10 (2007), 682–684 | DOI
[37] Taube J.S., “Head direction cells and the neurophysiological basis for a sence of direction”, Progr. Neurobiol., 55 (1998), 225–256 | DOI
[38] Fuhs M.C, Touretzky D.S., “A spin glass model of path integration in rat medial entorhinal cortex”, J. Neurosci., 26 (2006), 4266–4276 | DOI
[39] McNaughton B.L., Battaglia F.P., Jensen O., Moser E.I., Moser M.-B., “Path integration and the neural basis of the “cognitive map””, Nat. Rev. Neurosci., 7 (2006), 663–678 | DOI
[40] Moser E.I., Kropff E., Moser M.-B., “Place cells, grid cells, and the brain’s spatial representation system”, Annu. Rev. Neurosci., 31 (2008), 69–89 | DOI
[41] Burak Y., Fiete I.R., “Accurate path integration in continuous attractor network models of grid cells”, PLoS Comput Biol., 5:2 (2009), e1000291 | DOI | MR
[42] Rolls E.T., “Spatial view cells and the representation of place in the primate hippocampus”, Hippocampus, 9 (1999), 467–480 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[43] Victor J.D., Mechler F., Ohiorhenuan I., Schmid A.M., Purpura K.P., “Laminar and orientation-dependent characteristics of spatial nonlinearities: implications for the computational architecture of visual cortex”, J. Neurophysiol., 102 (2009), 3414–3432 | DOI
[44] Rolls E.T., Stringer S.M., “Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction”, Neural Networks, 8 (2005), 1229–1241 | DOI
[45] Rolls E.T., Xiang J.-Z., “Reward-spatial view representations and learning in the hippocampus”, J. Neurosci., 25 (2005), 6167–6174 | DOI
[46] Rolls E.T, Xiang J.-Z., “Spatial view cells in the primate hippocampus, and memory recall”, Rev. Neurosci., 17 (2006), 175–200
[47] Kubie J.L., Muller R.U., “Multiple representations in the hippocampus”, Hippocampus, 1:3 (1991), 240–242 | DOI
[48] Wilson M.A., McNaughton B.L., “Dynamics of the hippocampal ensemble code for space”, Science, 261 (1993), 1055–1058 | DOI
[49] de Araujo I.E.T., Rolls E.T., Stringer S.M., “A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells”, Hippocampus, 11 (2001), 699–706 | DOI
[50] Rolls E.T., Xiang J., Franco L., “Object, space, and object-space representations in the primate hippocampus”, J. Neurophysiol., 94 (2005), 833–844 | DOI
[51] Zhang K., “Representation of spatial orientation by the intrinsic dynamics of the headdirection cell ensemble: a theory”, J. Neurosci., 16 (1996), 2112–2126
[52] Samsonovich A., McNaughton B.L., “Path integration and cognitive mapping in a continuous attractor neural network model”, J. Neurosci., 17 (1997), 5900–5920
[53] Battaglia F.P., Treves A., “Attractor neural networks storing multiple space representations: a model for hippocampal place fields”, Physical Review E, 58 (1998), 7738–7753 | DOI
[54] Stringer S.M., Trappenberg T.P., Rolls E.T., Araujo I.E.T., “Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells”, Network: Comp. Neur. Syst., 13 (2002), 217–242 | Zbl
[55] Rolls E.T, Stringer S.M, Trappenberg T.P., “A unified model of spatial and episodic memory”, Proceed. Royal Soc. London B, 269 (2002), 1087–1093 | DOI
[56] Rolls E.T., “A computational theory of episodic memory formation in the hippocampus”, Behav. Brain Res., 215 (2010), 180–196 | DOI
[57] Arleo A., Rondi-Reig L., “Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms”, J. Integrat. Neurosci., 6 (2007), 327–366 | DOI
[58] Cobb S.R., Buhl E.H., Halasy K., Paulsen O., Somogyi P., “Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons”, Nature, 378 (1995), 75–78 | DOI
[59] Pouille F., Scanziani M., “Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition”, Science, 293 (2001), 1159–1163 | DOI
[60] Farrant M., Nusser Z., “Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors”, Nature Rev. Neurosci., 6:3 (2005), 215–229 | DOI
[61] McMahon L.L., Kauer J.A., “Hippocampal Interneurons express a novel form of synaptic plasticity”, Neuron, 18 (1997), 295–305 | DOI | MR
[62] Miles R., Toth K., Gulyas A.I., Hajos N., Freund T.F., “Differences between somatic and dendritic inhibition in the hippocampus”, Neuron, 16 (1996), 815–823 | DOI
[63] Wang X-J., Buzsaki G., “Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model”, J. Neurosci., 16 (1996), 6402–6413
[64] Bartos M., Vida I., Frotscher M., Meyer A., Monyer H., Geiger J.R.P., Jonas P., “Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks”, PNAS USA, 99 (2002), 13222–13227 | DOI
[65] Klausberger T., Magill P.J., Marton L.F., Roberts J.D.B., Cobden P.M., Buzsaki G., Somogyi P., “Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo”, Nature, 421 (2003), 844–848 | DOI
[66] Whittington M.A., Traub R.D., “Interneuron diversity series: Inhibitory interneurons and network oscillations in vitro”, Trends Neurosci., 26 (2003), 676–682 | DOI
[67] Csicsvari J., Hirase H., Czurko A., Buzsaki G., “Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat”, Neuron, 21 (1998), 179–189 | DOI
[68] Somogyi P., Tamas G., Lujan R., Buhl E.H., “Salient features of synaptic organisation in the cerebral cortex”, Brain Research Reviews, 26 (1998), 113–135 | DOI
[69] Tamas G., Somogyi P., Buhl E.H., “Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat”, J. Neurosci., 18 (1998), 4255–4270
[70] Hestrin S., Galarreta M., “Electrical synapses define networks of neocortical GABAergic neurons”, Trends Neurosci., 28 (2005), 304–309 | DOI
[71] Lund J.S., Griffiths S., Rumberger A., Levitt J.B., “Inhibitory synapse cover on the somata of excitatory neurons in macaque monkey visual cortex”, Cer. Cortex, 11 (2001), 783–795 | DOI
[72] Maccaferri G., Lacaille J.-C., “Interneuron diversity series: hippocampal interneuron classifications — making things as simple as possible, not simpler”, Trends Neurosci., 26 (2003), 564–571 | DOI
[73] Jonas P., Bischofberger J., Fricker D., Miles R., “Interneuron diversity series: fast in, fast out — temporal and spatial signal processing in hippocampal interneurons”, Trends Neurosci., 27 (2004), 30–40 | DOI
[74] Bragin A., Jando G., Nadasdy Z., Hetke J., Wise K., Buzsirki G., “Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat”, J. Neurosci., 15 (1995), 47–60
[75] Senior T.J, Huxter J.R., Allen K., O’Neill J., Csicsvari J., “Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus”, J. Neurosci., 28 (2008), 2274–2286 | DOI
[76] Egorov A.V., Hamam B.N., Fransen E., Hasselmo M.E., Alonso A.A., “Graded persistent activity in entorhinal cortex neurons”, Nature, 420 (2002), 173–178 | DOI
[77] Fransen E., Tahvildari B., Egorov A.V., Hasselmo M.E., Alonso A.A., “Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons”, Neuron, 49 (2006), 735–746 | DOI
[78] Geisler C., Robbe D., Zugaro M., Sirota A., Buzsaki G., “Hippocampal place cell assemblies are speed-controlled oscillators”, PNAS USA, 104 (2007), 8149–8154 | DOI
[79] Doeller C., Barry C., Burgess N., “Evidence for grid cells in a human memory network”, Nature, 463 (2010), 657–661 | DOI
[80] Hasselmo M.E., Brandon M.P., “Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory”, Hindawi Publishing Corporation, Neural Plasticity, 2008 (2008), Article ID 658323
[81] Blair H.T., Gupta K., Zhang K., “Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells”, Hippocampus, 18 (2008), 1239–1255 | DOI
[82] Burgess N., Barry C., O'Keefe J., “An oscillatory interference model of grid cell firing”, Hippocampus, 17 (2007), 801–812 | DOI
[83] Burgess N., “Grid cells and theta as oscillatory interference: theory and predictions”, Hippocampus, 18 (2008), 1157–1174 | DOI
[84] Jeewajee A., Barry C., O’Keefe J., Burgess N., “Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats”, Hippocampus, 18 (2008), 1175–1185 | DOI
[85] Giocomo L.M., Moser M.-B., Moser E.I., “Computational models of grid cells”, Neuron, 71 (2011), 589–603 | DOI
[86] Zilli E.A., Hasselmo M.E., “Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing”, J. Neurosci., 30 (2010), 13850–13860 | DOI
[87] Yoshida M., Giocomo L.M., Boardman I., Hasselmo M.E., “Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorso-ventral axis in the rat medial entorhinal cortex”, J. Neurosci., 31 (2011), 12683–12694 | DOI
[88] Skaggs W.E., McNaughton B.L., Wilson M.A., Barnes C.A., “Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences”, Hippocampus, 6 (1996), 149–172 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[89] Hafting T., Fyhn M., Bonnevie T., Moser M.-B., Moser E.-I., “Hippocampus-independent phase precession in entorhinal grid cells”, Nature, 453 (2008), 1248–1252 | DOI
[90] Jacobs J., Kahana M.J., Ekstrom A.D., Mollison M.V., Fried I., “A sense of direction in human entorhinal cortex”, PNAS USA, 107 (2010), 6487–6492 | DOI
[91] Blair H.T., Sharp P.E., “Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction”, J. Neurosci., 15 (1995), 6260–6270
[92] van Groen T., Wyss M.J., “The postsubicular cortex in rat: characterization of the fourth region of the subicular cortex and its connections”, Brain Res., 529 (1990), 165–177 | DOI
[93] Jacobs L.F., “From movement to transitivity: The role of hippocampal parallel maps in configural learning”, Reviews in Neurosci., 17 (2006), 99–109 | MR