Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2011_6_a9, author = {I. S. Guz}, title = {Constructive evaluation of the complete cross-validation for threshold classification}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {173--189}, publisher = {mathdoc}, volume = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_a9/} }
I. S. Guz. Constructive evaluation of the complete cross-validation for threshold classification. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011), pp. 173-189. http://geodesic.mathdoc.fr/item/MBB_2011_6_a9/
[1] Vapnik V.N., Chervonenkis A.Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974
[2] Vorontsov K.V., “Optimizatsionnye metody lineinoi i monotonnoi korrektsii v algebraicheskom podkhode k probleme raspoznavaniya”, ZhVM i MF, 40:1 (2000), 166–176 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1757695'>1757695</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0988.68156'>0988.68156</ext-link>
[3] Guz I.S., “Nelineinye monotonnye kompozitsii klassifikatorov”, Matematicheskie metody raspoznavaniya obrazov–13, MAKS Press, M., 2007, 111–114
[4] Rudakov K.V., Vorontsov K.V., “O metodakh optimizatsii i monotonnoi korrektsii v algebraicheskom podkhode k probleme raspoznavaniya”, Doklady RAN, 367:3 (1999), 314–317 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1724217'>1724217</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0963.68172'>0963.68172</ext-link>
[5] Vorontsov K.V., “Kombinatornyi podkhod k otsenke kachestva obuchaemykh algoritmov”, Matematicheskie voprosy kibernetiki, 13, Fizmatlit, M., 2004, 5–36
[6] Vorontsov K.V., “Kombinatornye obosnovaniya obuchaemykh algoritmov”, ZhVM i MF, 44:11 (2004), 2099–2112 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2129861'>2129861</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1075.93049'>1075.93049</ext-link>
[7] Vorontsov K.V., “Kombinatornye otsenki kachestva obucheniya po pretsedentam”, Doklady RAN, 394:2 (2004), 175–178 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2089748'>2089748</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1219.94059'>1219.94059</ext-link>
[8] Vorontsov K.V., “Combinatorial probability and the tightness of generalization bounds”, Pattern Recognition and Image Analysis, 18:2 (2008), 243–259 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1054661808020090'>10.1134/S1054661808020090</ext-link>
[9] Vorontsov K.V., “Splitting and similarity phenomena in the sets of classifiers and their effect on the probability of overfitting”, Pattern Recognition and Image Analysis, 19:3 (2009), 412–420 <ext-link ext-link-type='doi' href='https://doi.org/10.1134/S1054661809030055'>10.1134/S1054661809030055</ext-link><ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=2606198'>2606198</ext-link>
[10] Vorontsov K.V., “Tochnye otsenki veroyatnosti pereobucheniya”, Doklady RAN, 429:1 (2009), 15–18 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:1185.68613'>1185.68613</ext-link>
[11] Vapnik V.N., Vosstanovlenie zavisimostei po empiricheskim dannym, Nauka, M., 1979
[12] Zhuravlev Yu.I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Problemy kibernetiki, 33 (1978), 5–68 <ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0426.68092'>0426.68092</ext-link>
[13] Rudakov K.V., Algebraicheskaya teoriya universalnykh i lokalnykh ogranichenii dlya algoritmov raspoznavaniya, Dissertatsiya na soiskanie uchenoi stepeni d.f.-m.n., VTs RAN, M., 1992
[14] Hastie T., Tibshirani R., Friedman J., The elements of statistical learning, Springer-Verlag, 2001 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1851606'>1851606</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0973.62007'>0973.62007</ext-link>
[15] Vapnik V., The nature of statistical learning theory, 2, Springer-Verlag, New York, 2000 <ext-link ext-link-type='mr-item-id' href='http://mathscinet.ams.org/mathscinet-getitem?mr=1719582'>1719582</ext-link><ext-link ext-link-type='zbl-item-id' href='https://zbmath.org/?q=an:0934.62009'>0934.62009</ext-link>
[16] Rudakov K.V., “Monotonnye i unimodalnye korrektiruyuschie operatsii dlya algoritmov raspoznavaniya”, Matematicheskie metody raspoznavaniya obrazov–VII, Tez. dokl., M., 1995
[17] Kohavi R., “A study of cross-validation and bootstrap for accuracy estimation and model selection”, 14th International Joint Conference on Artificial Intelligence (Palais de Congres Montreal, Quebec, Canada), 1995, 1137–1145; URL: <ext-link ext-link-type='uri' href='http://citeseer.ist.psu.edu/kohavi95study.html'>http://citeseer.ist.psu.edu/kohavi95study.html</ext-link>
[18] Mullin M., Sukthankar R., Complete cross-validation for nearest neighbor classifiers, Proceedings of International Conference on Machine Learning, 2000 URL: <ext-link ext-link-type='uri' href='http://citeseer.ist.psu.edu/309025.html'>http://citeseer.ist.psu.edu/309025.html</ext-link>