Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2011_6_2_a9, author = {I. S. Guz}, title = {Constructive evaluation of the complete cross-validation for threshold classification}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {173--189}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a9/} }
TY - JOUR AU - I. S. Guz TI - Constructive evaluation of the complete cross-validation for threshold classification JO - Matematičeskaâ biologiâ i bioinformatika PY - 2011 SP - 173 EP - 189 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a9/ LA - ru ID - MBB_2011_6_2_a9 ER -
I. S. Guz. Constructive evaluation of the complete cross-validation for threshold classification. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 173-189. http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a9/
[1] Vapnik V.N., Chervonenkis A.Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974
[2] Vorontsov K.V., “Optimizatsionnye metody lineinoi i monotonnoi korrektsii v algebraicheskom podkhode k probleme raspoznavaniya”, ZhVM i MF, 40:1 (2000), 166–176 | MR | Zbl
[3] Guz I.S., “Nelineinye monotonnye kompozitsii klassifikatorov”, Matematicheskie metody raspoznavaniya obrazov–13, MAKS Press, M., 2007, 111–114
[4] Rudakov K.V., Vorontsov K.V., “O metodakh optimizatsii i monotonnoi korrektsii v algebraicheskom podkhode k probleme raspoznavaniya”, Doklady RAN, 367:3 (1999), 314–317 | MR | Zbl
[5] Vorontsov K.V., “Kombinatornyi podkhod k otsenke kachestva obuchaemykh algoritmov”, Matematicheskie voprosy kibernetiki, 13, Fizmatlit, M., 2004, 5–36
[6] Vorontsov K.V., “Kombinatornye obosnovaniya obuchaemykh algoritmov”, ZhVM i MF, 44:11 (2004), 2099–2112 | MR | Zbl
[7] Vorontsov K.V., “Kombinatornye otsenki kachestva obucheniya po pretsedentam”, Doklady RAN, 394:2 (2004), 175–178 | MR | Zbl
[8] Vorontsov K.V., “Combinatorial probability and the tightness of generalization bounds”, Pattern Recognition and Image Analysis, 18:2 (2008), 243–259 | DOI
[9] Vorontsov K.V., “Splitting and similarity phenomena in the sets of classifiers and their effect on the probability of overfitting”, Pattern Recognition and Image Analysis, 19:3 (2009), 412–420 | DOI | MR
[10] Vorontsov K.V., “Tochnye otsenki veroyatnosti pereobucheniya”, Doklady RAN, 429:1 (2009), 15–18 | Zbl
[11] Vapnik V.N., Vosstanovlenie zavisimostei po empiricheskim dannym, Nauka, M., 1979
[12] Zhuravlev Yu.I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Problemy kibernetiki, 33 (1978), 5–68 | Zbl
[13] Rudakov K.V., Algebraicheskaya teoriya universalnykh i lokalnykh ogranichenii dlya algoritmov raspoznavaniya, Dissertatsiya na soiskanie uchenoi stepeni d.f.-m.n., VTs RAN, M., 1992
[14] Hastie T., Tibshirani R., Friedman J., The elements of statistical learning, Springer-Verlag, 2001 | MR | Zbl
[15] Vapnik V., The nature of statistical learning theory, 2, Springer-Verlag, New York, 2000 | MR | Zbl
[16] Rudakov K.V., “Monotonnye i unimodalnye korrektiruyuschie operatsii dlya algoritmov raspoznavaniya”, Matematicheskie metody raspoznavaniya obrazov–VII, Tez. dokl., M., 1995
[17] Kohavi R., “A study of cross-validation and bootstrap for accuracy estimation and model selection”, 14th International Joint Conference on Artificial Intelligence (Palais de Congres Montreal, Quebec, Canada), 1995, 1137–1145; URL: http://citeseer.ist.psu.edu/kohavi95study.html
[18] Mullin M., Sukthankar R., Complete cross-validation for nearest neighbor classifiers, Proceedings of International Conference on Machine Learning, 2000 URL: http://citeseer.ist.psu.edu/309025.html