Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MBB_2011_6_2_a7, author = {D. A. Tikhonov and E. V. Sobolev and V. D. Lakhno and N. S. Fialko}, title = {Adiabatic approximation for the calculation of the charge mobility in the {DNA} {Holstein} model}, journal = {Matemati\v{c}eska\^a biologi\^a i bioinformatika}, pages = {264--272}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a7/} }
TY - JOUR AU - D. A. Tikhonov AU - E. V. Sobolev AU - V. D. Lakhno AU - N. S. Fialko TI - Adiabatic approximation for the calculation of the charge mobility in the DNA Holstein model JO - Matematičeskaâ biologiâ i bioinformatika PY - 2011 SP - 264 EP - 272 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a7/ LA - ru ID - MBB_2011_6_2_a7 ER -
%0 Journal Article %A D. A. Tikhonov %A E. V. Sobolev %A V. D. Lakhno %A N. S. Fialko %T Adiabatic approximation for the calculation of the charge mobility in the DNA Holstein model %J Matematičeskaâ biologiâ i bioinformatika %D 2011 %P 264-272 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a7/ %G ru %F MBB_2011_6_2_a7
D. A. Tikhonov; E. V. Sobolev; V. D. Lakhno; N. S. Fialko. Adiabatic approximation for the calculation of the charge mobility in the DNA Holstein model. Matematičeskaâ biologiâ i bioinformatika, Tome 6 (2011) no. 2, pp. 264-272. http://geodesic.mathdoc.fr/item/MBB_2011_6_2_a7/
[1] Lakhno V.D., “DNA nanobioelectronics”, International Journal of Quantum Chemistry, 108 (2008), 1970–1981 | DOI
[2] Nanobioelectronics – for Electronics, Biology, and Medicine, eds. Offenhäusser A., Rinaldi R., Springer, New York, 2009, 337 pp.
[3] Lakhno V.D., Fialko N.S., “Podvizhnost dyrok v odnorodnoi nukleotidnoi tsepochke”, Pisma v ZhETF, 78 (2003), 786–788
[4] Fialko N.S., Lakhno V.D., “Nonlinear dynamics of excitations in DNA”, Physics Letters A, 278 (2000), 108–111 | DOI
[5] Holstein T., “Studies of polaron motion: Part I. The molecular-crystal model”, Annals of Physics, 8 (1959), 325–342 | DOI | Zbl
[6] Komineas S., Kalosakas G., Bishop A.R., “Effects of intrinsic base-pair fluctuations on charge transport in DNA”, Physical Review E, 65 (2002), 061905 | DOI
[7] Lakhno V.D., Fialko N.S., Dinamicheskie modeli protsessov v kletkakh i subkletochnykh strukturakh, eds. Riznichenko G.Yu., Rubin A.B., NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2010, 11–67
[8] Voityuk A.A., Rösch N., Bixon M., Jortner J., “Electronic Coupling for Charge Transfer and Transport in DNA”, The Journal of Physical Chemistry B, 104 (2000), 9740–9745 | DOI
[9] Jortner J., Bixon M., Voityuk A.A., Rösch N., “Superexchange Mediated Charge Hopping in DNA”, The Journal of Physical Chemistry A, 106 (2002), 7599–7606 | DOI
[10] Lewis F.D., Wu Y., “Dynamics of superexchange photoinduced electron transfer in duplex DNA”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2 (2001), 1–16 | DOI
[11] Lakhno V.D., “Davydov's solitons in homogeneous nucleotide chain”, International Journal of Quantum Chemistry, 110 (2010), 127–137 | DOI
[12] Greenside H.S., Helfand E., “Numerical integration of stochastic differential equations II”, Bell System Technical Journal, 60 (1981), 1927–1940 | Zbl
[13] Magnus W., “On the exponential solution of differential equations for a linear operator”, Communications on Pure and Applied Mathematics, 7 (1954), 649–673 | DOI | MR | Zbl
[14] Del Buono N., Lopez L., “A survey on methods for computing matrix exponentials in numerical schemes for ODEs”, Computational Science – ICCS 2003, eds. Sloot P., Abramson D., Bogdanov A., Gorbachev Y., Dongarra J., Zomaya A., Springer, Berlin/Heidelberg, 2003, 111–120 | MR | Zbl
[15] Gallopoulos G., Saad Y., “Efficient solution of parabolic equations by Krylov approximation methods”, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 1236–1264 | DOI | MR | Zbl
[16] Lu Y.Y., Exponentials of Symmetric Matrices through Tridiagonal Reductions URL: (data obrascheniya: 15.11.2011) http://math.cityu.edu.hk/~mayylu/papers/matexp.pdf
[17] Fialko N.V., Perenos zaryada v DNK. Chislennoe modelirovanie protsessov perenosa zaryada v diskretnykh molekulyarnykh tsepochkakh, Lambert Academic Publishing, Saarbrucken, Germany, 2010, 93 pp.
[18] Lakhno V.D., Sultanov V.B, “O vozmozhnosti sverkhbystrogo perenosa zaryada v DNK”, Matematicheskaya biologiya i bioinformatika, 4 (2009), 46–51 ; URL: (дата обращения: 15.11.2011) http://www.matbio.org/downloads/Lakhno2009(4_46).pdf | Zbl